绿色合成用于高效提取多肽的两性离子-环糊精杂化聚合物:仪器分析与DFT计算的结合。

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-18 DOI:10.3390/polym17182524
Xiaoyun Lei, Xin Wang, Yuzhe Cao, Bingxing Ren, Yanyan Peng, Hanghang Zhao
{"title":"绿色合成用于高效提取多肽的两性离子-环糊精杂化聚合物:仪器分析与DFT计算的结合。","authors":"Xiaoyun Lei, Xin Wang, Yuzhe Cao, Bingxing Ren, Yanyan Peng, Hanghang Zhao","doi":"10.3390/polym17182524","DOIUrl":null,"url":null,"abstract":"<p><p>Adhering to the principles of green analytical chemistry (GAC) is crucial for advancing sample pretreatment. In this work, we developed a green in-tube solid-phase microextraction (IT-SPME) material utilizing non-toxic cyclodextrin and zwitterionic polymers as co-functioning monomers. The hybrid monolithic material was synthesized within 38 min via an efficient epoxy ring-opening reaction and free radical polymerization. Comprehensive characterization confirmed a rigid framework with strong anti-swelling properties, good permeability, and high enrichment efficiency on the polymers. When coupled with HPLC-UV, the optimized IT-SPME method enabled highly sensitive detection of polypeptides (vancomycin and teicoplanin) in aqueous matrices, achieving detection limits as low as 15.0-20.0 μg L<sup>-1</sup>, a wide linear range (60-800 μg L<sup>-1</sup>, R<sup>2</sup> > 0.99), and good precision (RSDs = 5.9-8.2%). The prepared material demonstrated remarkable performance in real complex water samples, achieving recovery rates of up to 95.4%. Density functional theory (DFT) calculations indicated that the adsorption mechanism primarily involves hydrogen bonding and electrostatic interactions. This study presents an effective approach for the development of green chemical synthesis of extraction materials and offers a sustainable platform for monitoring trace contaminants in environmental waters.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473841/pdf/","citationCount":"0","resultStr":"{\"title\":\"Green Synthesis of Zwitterionic-Cyclodextrin Hybrid Polymer for Efficient Extraction of Polypeptides: Combination of Instrumental Analysis and DFT Calculation.\",\"authors\":\"Xiaoyun Lei, Xin Wang, Yuzhe Cao, Bingxing Ren, Yanyan Peng, Hanghang Zhao\",\"doi\":\"10.3390/polym17182524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adhering to the principles of green analytical chemistry (GAC) is crucial for advancing sample pretreatment. In this work, we developed a green in-tube solid-phase microextraction (IT-SPME) material utilizing non-toxic cyclodextrin and zwitterionic polymers as co-functioning monomers. The hybrid monolithic material was synthesized within 38 min via an efficient epoxy ring-opening reaction and free radical polymerization. Comprehensive characterization confirmed a rigid framework with strong anti-swelling properties, good permeability, and high enrichment efficiency on the polymers. When coupled with HPLC-UV, the optimized IT-SPME method enabled highly sensitive detection of polypeptides (vancomycin and teicoplanin) in aqueous matrices, achieving detection limits as low as 15.0-20.0 μg L<sup>-1</sup>, a wide linear range (60-800 μg L<sup>-1</sup>, R<sup>2</sup> > 0.99), and good precision (RSDs = 5.9-8.2%). The prepared material demonstrated remarkable performance in real complex water samples, achieving recovery rates of up to 95.4%. Density functional theory (DFT) calculations indicated that the adsorption mechanism primarily involves hydrogen bonding and electrostatic interactions. This study presents an effective approach for the development of green chemical synthesis of extraction materials and offers a sustainable platform for monitoring trace contaminants in environmental waters.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473841/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182524\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182524","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

坚持绿色分析化学(GAC)原则是推进样品前处理的关键。在这项工作中,我们开发了一种绿色管内固相微萃取(IT-SPME)材料,利用无毒的环糊精和两性离子聚合物作为共功能单体。通过高效的环氧开环反应和自由基聚合反应,在38 min内合成了杂化单片材料。综合表征表明,该聚合物具有较强的抗膨胀性能、良好的渗透性和较高的富集效率。优化后的IT-SPME方法与HPLC-UV联用,对万古霉素和替可普兰宁在水溶液中的检测灵敏度高,检出限低至15.0 ~ 20.0 μg L-1,线性范围宽(60 ~ 800 μg L-1, R2为0.99),精密度高(rsd = 5.9 ~ 8.2%)。制备的材料在实际复杂水样中表现优异,回收率高达95.4%。密度泛函理论(DFT)计算表明,吸附机理主要涉及氢键和静电相互作用。本研究为萃取材料的绿色化学合成的发展提供了有效途径,并为环境水体中痕量污染物的监测提供了可持续的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Green Synthesis of Zwitterionic-Cyclodextrin Hybrid Polymer for Efficient Extraction of Polypeptides: Combination of Instrumental Analysis and DFT Calculation.

Adhering to the principles of green analytical chemistry (GAC) is crucial for advancing sample pretreatment. In this work, we developed a green in-tube solid-phase microextraction (IT-SPME) material utilizing non-toxic cyclodextrin and zwitterionic polymers as co-functioning monomers. The hybrid monolithic material was synthesized within 38 min via an efficient epoxy ring-opening reaction and free radical polymerization. Comprehensive characterization confirmed a rigid framework with strong anti-swelling properties, good permeability, and high enrichment efficiency on the polymers. When coupled with HPLC-UV, the optimized IT-SPME method enabled highly sensitive detection of polypeptides (vancomycin and teicoplanin) in aqueous matrices, achieving detection limits as low as 15.0-20.0 μg L-1, a wide linear range (60-800 μg L-1, R2 > 0.99), and good precision (RSDs = 5.9-8.2%). The prepared material demonstrated remarkable performance in real complex water samples, achieving recovery rates of up to 95.4%. Density functional theory (DFT) calculations indicated that the adsorption mechanism primarily involves hydrogen bonding and electrostatic interactions. This study presents an effective approach for the development of green chemical synthesis of extraction materials and offers a sustainable platform for monitoring trace contaminants in environmental waters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信