{"title":"丝素-聚亚胺微粒子对铜绿假单胞菌生物膜的抑制作用","authors":"Grace Neven, Tippabattini Jayaramudu, Mingyang Mao, Tugba Ozdemir","doi":"10.3390/polym17182470","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling bacterial growth and biofilm formation remains a major challenge in the treatment of chronic wounds and in preventing infection after biomedical device implantation. Thus, creating materials with inherent antibacterial potential is necessary. Here, we report silk fibroin-polyethylenimine-based (SF-PEI) microparticles to control the growth of <i>Pseudomonas aeruginosa</i>, which is a highly infectious and biofilm-forming pathogen. SF-PEI microparticles were fabricated using a solvent displacement method, and their microparticle formation was confirmed using Fourier-transform infrared spectroscopy (FTIR). The morphology and size of the microparticles were characterized using scanning electron microscopy (SEM) and dynamic light scattering (DLS). The SEM and DLS methods revealed that the microparticles formed showed a uniform, spherical morphology with a consistent size distribution, showing a Z-average of 834.82 nm. The antibacterial and biofilm inhibition properties of the SF-PEI microparticles were tested against <i>P. aeruginosa</i>. The results show significant control of bacterial growth and biofilm formation when treated with the SF-PEI particles. Further, a cell viability assay was evaluated using human dermal fibroblasts, and the results demonstrated that the SF-PEI microparticles developed demonstrated cytocompatibility, with no significant cytotoxic effects observed. These results suggest that SF-PEI microparticles offer a promising biocompatible strategy for reducing bacterial growth and their biofilm-associated infections, particularly in wound healing and medical device applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473277/pdf/","citationCount":"0","resultStr":"{\"title\":\"Inhibition of <i>Pseudomonas aeruginosa</i> Biofilms Using Robust Silk Fibroin-Poly(ethyleneimine) Microparticles.\",\"authors\":\"Grace Neven, Tippabattini Jayaramudu, Mingyang Mao, Tugba Ozdemir\",\"doi\":\"10.3390/polym17182470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Controlling bacterial growth and biofilm formation remains a major challenge in the treatment of chronic wounds and in preventing infection after biomedical device implantation. Thus, creating materials with inherent antibacterial potential is necessary. Here, we report silk fibroin-polyethylenimine-based (SF-PEI) microparticles to control the growth of <i>Pseudomonas aeruginosa</i>, which is a highly infectious and biofilm-forming pathogen. SF-PEI microparticles were fabricated using a solvent displacement method, and their microparticle formation was confirmed using Fourier-transform infrared spectroscopy (FTIR). The morphology and size of the microparticles were characterized using scanning electron microscopy (SEM) and dynamic light scattering (DLS). The SEM and DLS methods revealed that the microparticles formed showed a uniform, spherical morphology with a consistent size distribution, showing a Z-average of 834.82 nm. The antibacterial and biofilm inhibition properties of the SF-PEI microparticles were tested against <i>P. aeruginosa</i>. The results show significant control of bacterial growth and biofilm formation when treated with the SF-PEI particles. Further, a cell viability assay was evaluated using human dermal fibroblasts, and the results demonstrated that the SF-PEI microparticles developed demonstrated cytocompatibility, with no significant cytotoxic effects observed. These results suggest that SF-PEI microparticles offer a promising biocompatible strategy for reducing bacterial growth and their biofilm-associated infections, particularly in wound healing and medical device applications.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473277/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182470\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182470","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Inhibition of Pseudomonas aeruginosa Biofilms Using Robust Silk Fibroin-Poly(ethyleneimine) Microparticles.
Controlling bacterial growth and biofilm formation remains a major challenge in the treatment of chronic wounds and in preventing infection after biomedical device implantation. Thus, creating materials with inherent antibacterial potential is necessary. Here, we report silk fibroin-polyethylenimine-based (SF-PEI) microparticles to control the growth of Pseudomonas aeruginosa, which is a highly infectious and biofilm-forming pathogen. SF-PEI microparticles were fabricated using a solvent displacement method, and their microparticle formation was confirmed using Fourier-transform infrared spectroscopy (FTIR). The morphology and size of the microparticles were characterized using scanning electron microscopy (SEM) and dynamic light scattering (DLS). The SEM and DLS methods revealed that the microparticles formed showed a uniform, spherical morphology with a consistent size distribution, showing a Z-average of 834.82 nm. The antibacterial and biofilm inhibition properties of the SF-PEI microparticles were tested against P. aeruginosa. The results show significant control of bacterial growth and biofilm formation when treated with the SF-PEI particles. Further, a cell viability assay was evaluated using human dermal fibroblasts, and the results demonstrated that the SF-PEI microparticles developed demonstrated cytocompatibility, with no significant cytotoxic effects observed. These results suggest that SF-PEI microparticles offer a promising biocompatible strategy for reducing bacterial growth and their biofilm-associated infections, particularly in wound healing and medical device applications.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.