整合光子技术探测细菌纤维素的结构和声子动力学。

IF 4.9 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-09-20 DOI:10.3390/polym17182544
Levente Csóka, Bunsho Ohtani
{"title":"整合光子技术探测细菌纤维素的结构和声子动力学。","authors":"Levente Csóka, Bunsho Ohtani","doi":"10.3390/polym17182544","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial cellulose, a biopolymer synthesised by microorganisms, exhibits remarkable structural, optical, and electronic properties. This study utilised a range of photon- and electron-based techniques, including X-ray diffraction, proton nuclear magnetic resonance (<sup>1</sup>H-NMR), photoacoustic spectroscopy, and scanning electron microscopy, to thoroughly characterise BC. While XRD and NMR directly employ photons to probe the structure and composition, PAS indirectly converts absorbed photons into phonons to evaluate optoelectronic features. SEM revealed a dense nanofibrillar network with fibrils measuring 10-75 nm in diameter. XRD confirmed the crystalline nature of BC, identifying characteristic peaks associated with cellulose Iα. <sup>1</sup>H-NMR relaxation analysis differentiated between the ordered and disordered cellulose regions. PAS determined an optical bandgap of 2.97 eV and identified defect states between 3.6 and 2.9 eV, including a prominent peak at 3.35 eV, likely resulting from oxygen vacancies, hydroxyl modifications, or UV-induced rearrangements. These defects modify BC's electronic structure, suggesting potential for bandgap engineering. The integration of these complementary techniques provides a multidimensional understanding of BC's morphology, crystallinity, and electronic behaviour, underscoring its potential in bioelectronics, advanced composites, and biomedical applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473660/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrating Photon-Based Techniques to Probe Structural and Phonon Dynamics in Bacterial Cellulose.\",\"authors\":\"Levente Csóka, Bunsho Ohtani\",\"doi\":\"10.3390/polym17182544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial cellulose, a biopolymer synthesised by microorganisms, exhibits remarkable structural, optical, and electronic properties. This study utilised a range of photon- and electron-based techniques, including X-ray diffraction, proton nuclear magnetic resonance (<sup>1</sup>H-NMR), photoacoustic spectroscopy, and scanning electron microscopy, to thoroughly characterise BC. While XRD and NMR directly employ photons to probe the structure and composition, PAS indirectly converts absorbed photons into phonons to evaluate optoelectronic features. SEM revealed a dense nanofibrillar network with fibrils measuring 10-75 nm in diameter. XRD confirmed the crystalline nature of BC, identifying characteristic peaks associated with cellulose Iα. <sup>1</sup>H-NMR relaxation analysis differentiated between the ordered and disordered cellulose regions. PAS determined an optical bandgap of 2.97 eV and identified defect states between 3.6 and 2.9 eV, including a prominent peak at 3.35 eV, likely resulting from oxygen vacancies, hydroxyl modifications, or UV-induced rearrangements. These defects modify BC's electronic structure, suggesting potential for bandgap engineering. The integration of these complementary techniques provides a multidimensional understanding of BC's morphology, crystallinity, and electronic behaviour, underscoring its potential in bioelectronics, advanced composites, and biomedical applications.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473660/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182544\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182544","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

细菌纤维素是一种由微生物合成的生物聚合物,具有非凡的结构、光学和电子特性。这项研究利用了一系列基于光子和电子的技术,包括x射线衍射、质子核磁共振(1H-NMR)、光声光谱和扫描电子显微镜,来彻底表征BC。XRD和NMR直接利用光子来探测结构和组成,而PAS则间接将吸收的光子转化为声子来评价光电特性。扫描电镜显示一个致密的纳米纤维网络,其原纤维直径为10-75 nm。XRD证实了BC的结晶性,鉴定出与纤维素Iα相关的特征峰。1H-NMR弛豫分析区分了纤维素的有序区和无序区。PAS测定了2.97 eV的光学带隙,并确定了3.6至2.9 eV之间的缺陷态,包括3.35 eV的显著峰,可能是由氧空位、羟基修饰或紫外线诱导的重排引起的。这些缺陷改变了BC的电子结构,提示了带隙工程的潜力。这些互补技术的整合提供了对BC的形态、结晶度和电子行为的多维理解,强调了其在生物电子学、先进复合材料和生物医学应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Photon-Based Techniques to Probe Structural and Phonon Dynamics in Bacterial Cellulose.

Bacterial cellulose, a biopolymer synthesised by microorganisms, exhibits remarkable structural, optical, and electronic properties. This study utilised a range of photon- and electron-based techniques, including X-ray diffraction, proton nuclear magnetic resonance (1H-NMR), photoacoustic spectroscopy, and scanning electron microscopy, to thoroughly characterise BC. While XRD and NMR directly employ photons to probe the structure and composition, PAS indirectly converts absorbed photons into phonons to evaluate optoelectronic features. SEM revealed a dense nanofibrillar network with fibrils measuring 10-75 nm in diameter. XRD confirmed the crystalline nature of BC, identifying characteristic peaks associated with cellulose Iα. 1H-NMR relaxation analysis differentiated between the ordered and disordered cellulose regions. PAS determined an optical bandgap of 2.97 eV and identified defect states between 3.6 and 2.9 eV, including a prominent peak at 3.35 eV, likely resulting from oxygen vacancies, hydroxyl modifications, or UV-induced rearrangements. These defects modify BC's electronic structure, suggesting potential for bandgap engineering. The integration of these complementary techniques provides a multidimensional understanding of BC's morphology, crystallinity, and electronic behaviour, underscoring its potential in bioelectronics, advanced composites, and biomedical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信