{"title":"室温固化聚(δ-癸内酯)和赖氨酸二异氰酸酯聚氨酯网络催化剂的选择。","authors":"Marine Boursier, Aurelien Lebrun, Karine Parra, Sylvain Caillol, Claire Negrell, Julien Pinaud","doi":"10.3390/polym17182548","DOIUrl":null,"url":null,"abstract":"<p><p>With aging, harsh working conditions or sports injuries, the meniscus can degrade, causing pains to the patient. Nowadays, the treatment consists of the surgical replacement of this cartilage. Since this procedure can lead to complications due to open wounds and potential infections, synthesizing a polyurethane-based injectable joint filler represents an interesting alternative. In this study, poly(δ-decalactone)triol oligomers and Lysine diisocyanate were chosen as starting monomers to create an isocyanate-based prepolymer, because of their biocompatibility and liquid state at room temperature. Nevertheless, to fully replace the meniscus, the joint filler must crosslink in vivo, and this should occur in a short time window. Accordingly, in this work, we studied the catalytic activity of a range of relatively safe compounds for the alcohol/isocyanate addition reaction. A preliminary <sup>1</sup>H NMR kinetic study of the catalyzed addition of 1-butanol or 3-pentanol on lysine diisocyanate ethyl ester at body temperature has been performed to reach this objective. Among catalysts, stannous octoate was the most effective with either primary or secondary alcohol, allowing them to reach 92 and 80% alcohol conversion, respectively. In addition, the conversion of the primary and secondary isocyanates of lysine diisocyanate ethyl ester was monitored for all the catalysts and revealed different behaviors depending on the catalyst employed. Stannous octoate, unlike the others, showed a similar reactivity for primary and secondary isocyanates with conversions of 49 and 47%, respectively. Finally, when employing the most effective catalyst, curing of the poly(δ-decalactone) triisocyanate with glycerol at 35 °C provided a polyurethane elastomer that exhibits an elastic modulus of 519 kPa and a swelling index lower than 3% in PBS, making it suitable for injectable polyurethane joint filler application.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 18","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473467/pdf/","citationCount":"0","resultStr":"{\"title\":\"Catalyst Selection for Body-Temperature Curable Polyurethane Networks from Poly(δ-Decalactone) and Lysine Diisocyanate.\",\"authors\":\"Marine Boursier, Aurelien Lebrun, Karine Parra, Sylvain Caillol, Claire Negrell, Julien Pinaud\",\"doi\":\"10.3390/polym17182548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With aging, harsh working conditions or sports injuries, the meniscus can degrade, causing pains to the patient. Nowadays, the treatment consists of the surgical replacement of this cartilage. Since this procedure can lead to complications due to open wounds and potential infections, synthesizing a polyurethane-based injectable joint filler represents an interesting alternative. In this study, poly(δ-decalactone)triol oligomers and Lysine diisocyanate were chosen as starting monomers to create an isocyanate-based prepolymer, because of their biocompatibility and liquid state at room temperature. Nevertheless, to fully replace the meniscus, the joint filler must crosslink in vivo, and this should occur in a short time window. Accordingly, in this work, we studied the catalytic activity of a range of relatively safe compounds for the alcohol/isocyanate addition reaction. A preliminary <sup>1</sup>H NMR kinetic study of the catalyzed addition of 1-butanol or 3-pentanol on lysine diisocyanate ethyl ester at body temperature has been performed to reach this objective. Among catalysts, stannous octoate was the most effective with either primary or secondary alcohol, allowing them to reach 92 and 80% alcohol conversion, respectively. In addition, the conversion of the primary and secondary isocyanates of lysine diisocyanate ethyl ester was monitored for all the catalysts and revealed different behaviors depending on the catalyst employed. Stannous octoate, unlike the others, showed a similar reactivity for primary and secondary isocyanates with conversions of 49 and 47%, respectively. Finally, when employing the most effective catalyst, curing of the poly(δ-decalactone) triisocyanate with glycerol at 35 °C provided a polyurethane elastomer that exhibits an elastic modulus of 519 kPa and a swelling index lower than 3% in PBS, making it suitable for injectable polyurethane joint filler application.</p>\",\"PeriodicalId\":20416,\"journal\":{\"name\":\"Polymers\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473467/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/polym17182548\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17182548","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Catalyst Selection for Body-Temperature Curable Polyurethane Networks from Poly(δ-Decalactone) and Lysine Diisocyanate.
With aging, harsh working conditions or sports injuries, the meniscus can degrade, causing pains to the patient. Nowadays, the treatment consists of the surgical replacement of this cartilage. Since this procedure can lead to complications due to open wounds and potential infections, synthesizing a polyurethane-based injectable joint filler represents an interesting alternative. In this study, poly(δ-decalactone)triol oligomers and Lysine diisocyanate were chosen as starting monomers to create an isocyanate-based prepolymer, because of their biocompatibility and liquid state at room temperature. Nevertheless, to fully replace the meniscus, the joint filler must crosslink in vivo, and this should occur in a short time window. Accordingly, in this work, we studied the catalytic activity of a range of relatively safe compounds for the alcohol/isocyanate addition reaction. A preliminary 1H NMR kinetic study of the catalyzed addition of 1-butanol or 3-pentanol on lysine diisocyanate ethyl ester at body temperature has been performed to reach this objective. Among catalysts, stannous octoate was the most effective with either primary or secondary alcohol, allowing them to reach 92 and 80% alcohol conversion, respectively. In addition, the conversion of the primary and secondary isocyanates of lysine diisocyanate ethyl ester was monitored for all the catalysts and revealed different behaviors depending on the catalyst employed. Stannous octoate, unlike the others, showed a similar reactivity for primary and secondary isocyanates with conversions of 49 and 47%, respectively. Finally, when employing the most effective catalyst, curing of the poly(δ-decalactone) triisocyanate with glycerol at 35 °C provided a polyurethane elastomer that exhibits an elastic modulus of 519 kPa and a swelling index lower than 3% in PBS, making it suitable for injectable polyurethane joint filler application.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.