Mina Josef, Menna M Abdellatif, Rehab Abdelmonem, Mohamed A El-Nabarawi, Mahmoud Teaima, Hadeer M Bedair, Alshaimaa Attia
{"title":"侵袭体和纳米结构脂质载体靶向递送头孢他啶联合n -乙酰半胱氨酸:治疗铜绿假单胞菌诱导的角膜炎的新方法。","authors":"Mina Josef, Menna M Abdellatif, Rehab Abdelmonem, Mohamed A El-Nabarawi, Mahmoud Teaima, Hadeer M Bedair, Alshaimaa Attia","doi":"10.3390/pharmaceutics17091184","DOIUrl":null,"url":null,"abstract":"<p><p><b>Objectives</b>: This study was designed to optimize a ceftazidime (CTZ)-loaded nanocarrier that could efficiently permeate across corneal tissues. Moreover, N-acetylcysteine (NAC) was combined with an optimized CTZ-loaded formula to augment the antimicrobial activity and facilitate the efficient healing of <i>Pseudomonas aeruginosa</i>-induced keratitis. <b>Methods</b>: Different CTZ-loaded invasomes (INVs) and CTZ-loaded nanostructured lipid carriers (NLC) were fabricated and fully characterized via the determination of the entrapment efficiency (EE%), particle size (PS), surface charge, and percentage of CTZ release. Next, NAC was added to the optimized formulae from each nanocarrier, which were further assessed through ex vivo corneal permeation and in vitro antimicrobial activity studies. Finally, an in vivo evaluation of the optimal nanocarrier in the presence of NAC was performed. <b>Results</b>: Both nanocarriers showed nanoscale PS with sufficient surface charges. CTZ-loaded NLC formulae showed a higher EE% range with a sustained drug release profile. Both optimized formulae showed a spherical shape and excellent stability. Moreover, the antibacterial activity and biofilm inhibition assessments confirmed the synergistic effects of NAC when combined with different CTZ-loaded nanocarriers. However, the optimized CTZ-loaded INV formula achieved higher corneal permeation and deposition compared to the optimized CTZ-loaded NLC formula. Finally, the in vivo assessment confirmed the dominance of the optimized CTZ-loaded INV formula combined with NAC, where the microbiological, histopathological, and immunohistopathological examinations showed the rapid eradication of keratitis. <b>Conclusions</b>: Recent strategies for the incorporation of antibiotics into nanocarriers, combined with mucolytic agents, can offer a promising platform to boost the therapeutic efficiency of antibiotics and prevent antimicrobial resistance.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473240/pdf/","citationCount":"0","resultStr":"{\"title\":\"Invasomes and Nanostructured Lipid Carriers for Targeted Delivery of Ceftazidime Combined with N-Acetylcysteine: A Novel Approach to Treat <i>Pseudomonas aeruginosa</i>-Induced Keratitis.\",\"authors\":\"Mina Josef, Menna M Abdellatif, Rehab Abdelmonem, Mohamed A El-Nabarawi, Mahmoud Teaima, Hadeer M Bedair, Alshaimaa Attia\",\"doi\":\"10.3390/pharmaceutics17091184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Objectives</b>: This study was designed to optimize a ceftazidime (CTZ)-loaded nanocarrier that could efficiently permeate across corneal tissues. Moreover, N-acetylcysteine (NAC) was combined with an optimized CTZ-loaded formula to augment the antimicrobial activity and facilitate the efficient healing of <i>Pseudomonas aeruginosa</i>-induced keratitis. <b>Methods</b>: Different CTZ-loaded invasomes (INVs) and CTZ-loaded nanostructured lipid carriers (NLC) were fabricated and fully characterized via the determination of the entrapment efficiency (EE%), particle size (PS), surface charge, and percentage of CTZ release. Next, NAC was added to the optimized formulae from each nanocarrier, which were further assessed through ex vivo corneal permeation and in vitro antimicrobial activity studies. Finally, an in vivo evaluation of the optimal nanocarrier in the presence of NAC was performed. <b>Results</b>: Both nanocarriers showed nanoscale PS with sufficient surface charges. CTZ-loaded NLC formulae showed a higher EE% range with a sustained drug release profile. Both optimized formulae showed a spherical shape and excellent stability. Moreover, the antibacterial activity and biofilm inhibition assessments confirmed the synergistic effects of NAC when combined with different CTZ-loaded nanocarriers. However, the optimized CTZ-loaded INV formula achieved higher corneal permeation and deposition compared to the optimized CTZ-loaded NLC formula. Finally, the in vivo assessment confirmed the dominance of the optimized CTZ-loaded INV formula combined with NAC, where the microbiological, histopathological, and immunohistopathological examinations showed the rapid eradication of keratitis. <b>Conclusions</b>: Recent strategies for the incorporation of antibiotics into nanocarriers, combined with mucolytic agents, can offer a promising platform to boost the therapeutic efficiency of antibiotics and prevent antimicrobial resistance.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473240/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics17091184\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091184","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Invasomes and Nanostructured Lipid Carriers for Targeted Delivery of Ceftazidime Combined with N-Acetylcysteine: A Novel Approach to Treat Pseudomonas aeruginosa-Induced Keratitis.
Objectives: This study was designed to optimize a ceftazidime (CTZ)-loaded nanocarrier that could efficiently permeate across corneal tissues. Moreover, N-acetylcysteine (NAC) was combined with an optimized CTZ-loaded formula to augment the antimicrobial activity and facilitate the efficient healing of Pseudomonas aeruginosa-induced keratitis. Methods: Different CTZ-loaded invasomes (INVs) and CTZ-loaded nanostructured lipid carriers (NLC) were fabricated and fully characterized via the determination of the entrapment efficiency (EE%), particle size (PS), surface charge, and percentage of CTZ release. Next, NAC was added to the optimized formulae from each nanocarrier, which were further assessed through ex vivo corneal permeation and in vitro antimicrobial activity studies. Finally, an in vivo evaluation of the optimal nanocarrier in the presence of NAC was performed. Results: Both nanocarriers showed nanoscale PS with sufficient surface charges. CTZ-loaded NLC formulae showed a higher EE% range with a sustained drug release profile. Both optimized formulae showed a spherical shape and excellent stability. Moreover, the antibacterial activity and biofilm inhibition assessments confirmed the synergistic effects of NAC when combined with different CTZ-loaded nanocarriers. However, the optimized CTZ-loaded INV formula achieved higher corneal permeation and deposition compared to the optimized CTZ-loaded NLC formula. Finally, the in vivo assessment confirmed the dominance of the optimized CTZ-loaded INV formula combined with NAC, where the microbiological, histopathological, and immunohistopathological examinations showed the rapid eradication of keratitis. Conclusions: Recent strategies for the incorporation of antibiotics into nanocarriers, combined with mucolytic agents, can offer a promising platform to boost the therapeutic efficiency of antibiotics and prevent antimicrobial resistance.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.