{"title":"基于纳米配方的经皮给药:人畜共患疾病抗寄生虫治疗的范式转变。","authors":"Yuan Zhao, Ruoxuan Xiu, Chengxiang Wang, Junqi Wang, Dawei Guo, Wanhe Luo, Shanxiang Jiang, Zhiyi Ge, Xiuge Gao","doi":"10.3390/pharmaceutics17091216","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoparticle-based transdermal drug delivery systems (TDDS) have emerged as a revolutionary approach for antiparasitic therapy, addressing key challenges such as poor bioavailability, systemic toxicity, and drug resistance. This review highlights the advancements in nanotechnology-driven TDDS for combating zoonotic parasitic diseases, including leishmaniasis, malaria, and infections treated by broad-spectrum drugs like ivermectin and albendazole. By leveraging nanocarriers such as liposomes, nanoemulsions, and microneedles, which enhance skin permeation, enable controlled drug release, and improve targeting specificity. For instance, deformable transfersomes and ethosomes achieve high transdermal efficiency without chemical adjuvants, while microneedle arrays physically bypass the stratum corneum for precise delivery. Furthermore, sustained-release hydrogels and stimuli-responsive nanoparticles optimize therapeutic efficacy and reduce adverse effects. Despite promising results, clinical translation faces challenges in manufacturing scalability, long-term safety, and accessibility in resource-limited settings. Future directions include bioinspired nanocarriers, artificial intelligence (AI)-driven design, and integration with global health initiatives like \"One Health\", all aimed at ensuring equitable implementation. This review highlights the transformative potential of nanotechnology in achieving sustainable antiparasitic solutions for zoonotic diseases.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473851/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nanoformulation-Based Transdermal Drug Delivery: A Paradigm Shift in Antiparasitic Therapy for Zoonotic Diseases.\",\"authors\":\"Yuan Zhao, Ruoxuan Xiu, Chengxiang Wang, Junqi Wang, Dawei Guo, Wanhe Luo, Shanxiang Jiang, Zhiyi Ge, Xiuge Gao\",\"doi\":\"10.3390/pharmaceutics17091216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanoparticle-based transdermal drug delivery systems (TDDS) have emerged as a revolutionary approach for antiparasitic therapy, addressing key challenges such as poor bioavailability, systemic toxicity, and drug resistance. This review highlights the advancements in nanotechnology-driven TDDS for combating zoonotic parasitic diseases, including leishmaniasis, malaria, and infections treated by broad-spectrum drugs like ivermectin and albendazole. By leveraging nanocarriers such as liposomes, nanoemulsions, and microneedles, which enhance skin permeation, enable controlled drug release, and improve targeting specificity. For instance, deformable transfersomes and ethosomes achieve high transdermal efficiency without chemical adjuvants, while microneedle arrays physically bypass the stratum corneum for precise delivery. Furthermore, sustained-release hydrogels and stimuli-responsive nanoparticles optimize therapeutic efficacy and reduce adverse effects. Despite promising results, clinical translation faces challenges in manufacturing scalability, long-term safety, and accessibility in resource-limited settings. Future directions include bioinspired nanocarriers, artificial intelligence (AI)-driven design, and integration with global health initiatives like \\\"One Health\\\", all aimed at ensuring equitable implementation. This review highlights the transformative potential of nanotechnology in achieving sustainable antiparasitic solutions for zoonotic diseases.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473851/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics17091216\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091216","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Nanoformulation-Based Transdermal Drug Delivery: A Paradigm Shift in Antiparasitic Therapy for Zoonotic Diseases.
Nanoparticle-based transdermal drug delivery systems (TDDS) have emerged as a revolutionary approach for antiparasitic therapy, addressing key challenges such as poor bioavailability, systemic toxicity, and drug resistance. This review highlights the advancements in nanotechnology-driven TDDS for combating zoonotic parasitic diseases, including leishmaniasis, malaria, and infections treated by broad-spectrum drugs like ivermectin and albendazole. By leveraging nanocarriers such as liposomes, nanoemulsions, and microneedles, which enhance skin permeation, enable controlled drug release, and improve targeting specificity. For instance, deformable transfersomes and ethosomes achieve high transdermal efficiency without chemical adjuvants, while microneedle arrays physically bypass the stratum corneum for precise delivery. Furthermore, sustained-release hydrogels and stimuli-responsive nanoparticles optimize therapeutic efficacy and reduce adverse effects. Despite promising results, clinical translation faces challenges in manufacturing scalability, long-term safety, and accessibility in resource-limited settings. Future directions include bioinspired nanocarriers, artificial intelligence (AI)-driven design, and integration with global health initiatives like "One Health", all aimed at ensuring equitable implementation. This review highlights the transformative potential of nanotechnology in achieving sustainable antiparasitic solutions for zoonotic diseases.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.