Yaya Su, Yuwen Zhu, Lei Ren, Xiang Deng, Rui Song, Lingling Wu, Zhihui Yang, Hailong Yuan
{"title":"槲皮素纳米晶体凝胶:一种新的局部治疗雄激素性脱发的策略。","authors":"Yaya Su, Yuwen Zhu, Lei Ren, Xiang Deng, Rui Song, Lingling Wu, Zhihui Yang, Hailong Yuan","doi":"10.3390/pharmaceutics17091188","DOIUrl":null,"url":null,"abstract":"<p><p><b>Purpose</b>: Androgenetic alopecia (AGA) is a common, chronic, non-cicatricial dermatological condition characterized by progressive miniaturization of hair follicles. Although AGA is a benign disorder, it has a considerable impact on patients' quality of life and psychological health. The current treatment options often demonstrate limited efficacy and are frequently associated with undesirable side effects. This study aimed to co-mill two natural compounds, quercetin (QT) and glycyrrhizic acid (GL), to develop follicle-targeted nanocrystals (NCs), thereby enhancing local accumulation, improving the pathological follicular microenvironment associated with AGA, and promoting hair regrowth. <b>Methods</b>: QT nanocrystals (QT-NCs) were fabricated using a top-down wet media milling technique with GL as a bioactive stabilizer. The resulting QT-NCs were characterized regarding their particle size, crystallinity, morphology, and stability. The skin permeation properties of the QT-NCs were further evaluated in vitro, and their therapeutic efficacy was assessed in a dihydrotestosterone (DHT)-induced AGA mouse model. <b>Results</b>: The QT-NCs exhibited an irregular structure with a particle size ranging from 200 to 300 nm, demonstrating uniform dimensions and excellent storage stability. In vitro permeation studies revealed a 2.27-fold increase in cumulative penetration and a 2.47-fold enhancement in skin retention compared to raw QT. In the DHT-induced AGA mouse model, QT-NCs significantly reduced local DHT levels while concurrently modulating the follicular microenvironment, resulting in markedly improved therapeutic outcomes. Notably, when co-administered, QT and GL demonstrated synergistic pharmacological effects, suggesting potential combinatory benefits. <b>Conclusions</b>: This study presents the first demonstration of QT-NCs for AGA treatment, establishing a novel therapeutic strategy with substantial potential for clinical translation.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473781/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quercetin Nanocrystal Gel: A Novel Topical Therapeutic Strategy for Androgenetic Alopecia.\",\"authors\":\"Yaya Su, Yuwen Zhu, Lei Ren, Xiang Deng, Rui Song, Lingling Wu, Zhihui Yang, Hailong Yuan\",\"doi\":\"10.3390/pharmaceutics17091188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Purpose</b>: Androgenetic alopecia (AGA) is a common, chronic, non-cicatricial dermatological condition characterized by progressive miniaturization of hair follicles. Although AGA is a benign disorder, it has a considerable impact on patients' quality of life and psychological health. The current treatment options often demonstrate limited efficacy and are frequently associated with undesirable side effects. This study aimed to co-mill two natural compounds, quercetin (QT) and glycyrrhizic acid (GL), to develop follicle-targeted nanocrystals (NCs), thereby enhancing local accumulation, improving the pathological follicular microenvironment associated with AGA, and promoting hair regrowth. <b>Methods</b>: QT nanocrystals (QT-NCs) were fabricated using a top-down wet media milling technique with GL as a bioactive stabilizer. The resulting QT-NCs were characterized regarding their particle size, crystallinity, morphology, and stability. The skin permeation properties of the QT-NCs were further evaluated in vitro, and their therapeutic efficacy was assessed in a dihydrotestosterone (DHT)-induced AGA mouse model. <b>Results</b>: The QT-NCs exhibited an irregular structure with a particle size ranging from 200 to 300 nm, demonstrating uniform dimensions and excellent storage stability. In vitro permeation studies revealed a 2.27-fold increase in cumulative penetration and a 2.47-fold enhancement in skin retention compared to raw QT. In the DHT-induced AGA mouse model, QT-NCs significantly reduced local DHT levels while concurrently modulating the follicular microenvironment, resulting in markedly improved therapeutic outcomes. Notably, when co-administered, QT and GL demonstrated synergistic pharmacological effects, suggesting potential combinatory benefits. <b>Conclusions</b>: This study presents the first demonstration of QT-NCs for AGA treatment, establishing a novel therapeutic strategy with substantial potential for clinical translation.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473781/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics17091188\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091188","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Quercetin Nanocrystal Gel: A Novel Topical Therapeutic Strategy for Androgenetic Alopecia.
Purpose: Androgenetic alopecia (AGA) is a common, chronic, non-cicatricial dermatological condition characterized by progressive miniaturization of hair follicles. Although AGA is a benign disorder, it has a considerable impact on patients' quality of life and psychological health. The current treatment options often demonstrate limited efficacy and are frequently associated with undesirable side effects. This study aimed to co-mill two natural compounds, quercetin (QT) and glycyrrhizic acid (GL), to develop follicle-targeted nanocrystals (NCs), thereby enhancing local accumulation, improving the pathological follicular microenvironment associated with AGA, and promoting hair regrowth. Methods: QT nanocrystals (QT-NCs) were fabricated using a top-down wet media milling technique with GL as a bioactive stabilizer. The resulting QT-NCs were characterized regarding their particle size, crystallinity, morphology, and stability. The skin permeation properties of the QT-NCs were further evaluated in vitro, and their therapeutic efficacy was assessed in a dihydrotestosterone (DHT)-induced AGA mouse model. Results: The QT-NCs exhibited an irregular structure with a particle size ranging from 200 to 300 nm, demonstrating uniform dimensions and excellent storage stability. In vitro permeation studies revealed a 2.27-fold increase in cumulative penetration and a 2.47-fold enhancement in skin retention compared to raw QT. In the DHT-induced AGA mouse model, QT-NCs significantly reduced local DHT levels while concurrently modulating the follicular microenvironment, resulting in markedly improved therapeutic outcomes. Notably, when co-administered, QT and GL demonstrated synergistic pharmacological effects, suggesting potential combinatory benefits. Conclusions: This study presents the first demonstration of QT-NCs for AGA treatment, establishing a novel therapeutic strategy with substantial potential for clinical translation.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.