Layane Souza Rego, Marianna Teixeira Pinho Favaro, Monica Josiane Rodrigues-Jesus, Robert Andreata-Santos, Luiz Mário Ramos Janini, Marcelo Martins Seckler, Luis Carlos de Souza Ferreira, Adriano Rodrigues Azzoni
{"title":"氨基化合物合成的用于递送SARS-CoV-2抗原的金纳米颗粒","authors":"Layane Souza Rego, Marianna Teixeira Pinho Favaro, Monica Josiane Rodrigues-Jesus, Robert Andreata-Santos, Luiz Mário Ramos Janini, Marcelo Martins Seckler, Luis Carlos de Souza Ferreira, Adriano Rodrigues Azzoni","doi":"10.3390/pharmaceutics17091211","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Gold nanoparticles (AuNPs) are a promising platform for vaccine antigen delivery due to their ability to stimulate both innate and adaptive immune responses. These effects depend strongly on physicochemical properties such as size, polydispersity, morphology, and surface charge, which are in turn determined by the synthesis method. While amino acids are often used as capping agents for AuNPs, their direct use as both reducing and stabilizing agents has been rarely investigated. <b>Objectives:</b> This study aimed to establish an ultrasound-assisted method for synthesizing AuNPs using amino compounds as both reducing and stabilizing agents, and assess their physicochemical characteristics, antigen-binding capacity, and immunogenicity. <b>Methods:</b> AuNPs were synthesized using L-cysteine, L-arginine, and cysteamine as dual reducing/stabilizing agents under ultrasonic conditions. The nanoparticles were combined with a recombinant receptor-binding domain (RBD) of SARS-CoV-2 and evaluated in mice for their ability to induce antibody responses. <b>Results:</b> The synthesized AuNPs exhibited hydrodynamic diameters ranging from 6.3 to 12.4 nm and zeta potentials from -40.5 to +36.5 mV, depending on the amino compound used. All formulations elicited robust anti-RBD IgG responses, but virus neutralization activity varied significantly. Notably, AuNP-arginine induced the strongest neutralizing response despite lower adsorption capacity and stability, suggesting that epitope preservation and antigen presentation quality were more decisive than antigen density. <b>Conclusions:</b> These findings underscore the importance of nanoparticle design in optimizing antigen presentation and highlight the potential of amino compound-synthesized AuNPs as effective antigen delivery vehicles for future vaccine development.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473889/pdf/","citationCount":"0","resultStr":"{\"title\":\"Amino Compound-Synthesized Gold Nanoparticles for SARS-CoV-2 Antigen Delivery.\",\"authors\":\"Layane Souza Rego, Marianna Teixeira Pinho Favaro, Monica Josiane Rodrigues-Jesus, Robert Andreata-Santos, Luiz Mário Ramos Janini, Marcelo Martins Seckler, Luis Carlos de Souza Ferreira, Adriano Rodrigues Azzoni\",\"doi\":\"10.3390/pharmaceutics17091211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Gold nanoparticles (AuNPs) are a promising platform for vaccine antigen delivery due to their ability to stimulate both innate and adaptive immune responses. These effects depend strongly on physicochemical properties such as size, polydispersity, morphology, and surface charge, which are in turn determined by the synthesis method. While amino acids are often used as capping agents for AuNPs, their direct use as both reducing and stabilizing agents has been rarely investigated. <b>Objectives:</b> This study aimed to establish an ultrasound-assisted method for synthesizing AuNPs using amino compounds as both reducing and stabilizing agents, and assess their physicochemical characteristics, antigen-binding capacity, and immunogenicity. <b>Methods:</b> AuNPs were synthesized using L-cysteine, L-arginine, and cysteamine as dual reducing/stabilizing agents under ultrasonic conditions. The nanoparticles were combined with a recombinant receptor-binding domain (RBD) of SARS-CoV-2 and evaluated in mice for their ability to induce antibody responses. <b>Results:</b> The synthesized AuNPs exhibited hydrodynamic diameters ranging from 6.3 to 12.4 nm and zeta potentials from -40.5 to +36.5 mV, depending on the amino compound used. All formulations elicited robust anti-RBD IgG responses, but virus neutralization activity varied significantly. Notably, AuNP-arginine induced the strongest neutralizing response despite lower adsorption capacity and stability, suggesting that epitope preservation and antigen presentation quality were more decisive than antigen density. <b>Conclusions:</b> These findings underscore the importance of nanoparticle design in optimizing antigen presentation and highlight the potential of amino compound-synthesized AuNPs as effective antigen delivery vehicles for future vaccine development.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473889/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics17091211\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091211","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Amino Compound-Synthesized Gold Nanoparticles for SARS-CoV-2 Antigen Delivery.
Background: Gold nanoparticles (AuNPs) are a promising platform for vaccine antigen delivery due to their ability to stimulate both innate and adaptive immune responses. These effects depend strongly on physicochemical properties such as size, polydispersity, morphology, and surface charge, which are in turn determined by the synthesis method. While amino acids are often used as capping agents for AuNPs, their direct use as both reducing and stabilizing agents has been rarely investigated. Objectives: This study aimed to establish an ultrasound-assisted method for synthesizing AuNPs using amino compounds as both reducing and stabilizing agents, and assess their physicochemical characteristics, antigen-binding capacity, and immunogenicity. Methods: AuNPs were synthesized using L-cysteine, L-arginine, and cysteamine as dual reducing/stabilizing agents under ultrasonic conditions. The nanoparticles were combined with a recombinant receptor-binding domain (RBD) of SARS-CoV-2 and evaluated in mice for their ability to induce antibody responses. Results: The synthesized AuNPs exhibited hydrodynamic diameters ranging from 6.3 to 12.4 nm and zeta potentials from -40.5 to +36.5 mV, depending on the amino compound used. All formulations elicited robust anti-RBD IgG responses, but virus neutralization activity varied significantly. Notably, AuNP-arginine induced the strongest neutralizing response despite lower adsorption capacity and stability, suggesting that epitope preservation and antigen presentation quality were more decisive than antigen density. Conclusions: These findings underscore the importance of nanoparticle design in optimizing antigen presentation and highlight the potential of amino compound-synthesized AuNPs as effective antigen delivery vehicles for future vaccine development.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.