Emily Sanchez, Trent Eastman, Jennifer Potter, Robert Meyer
{"title":"评价光学相干断层扫描和x射线计算机断层扫描测量片剂薄膜涂层厚度。","authors":"Emily Sanchez, Trent Eastman, Jennifer Potter, Robert Meyer","doi":"10.3390/pharmaceutics17091225","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objective:</b> Film coatings are vital components of many pharmaceutical products consumed orally in solid dosage form, and the optimization of the film coating unit operation is critical to the success of these products. It is essential to maintain adequate film coat thickness on tablets to ensure the elegance, mechanical integrity, and controlled-release functionality of active pharmaceutical ingredients. We aim to evaluate techniques for measuring the film coat thickness of tablets in the pharmaceutical drug product development space as current research primarily focuses on in-line methods at the manufacturing scale. <b>Methods:</b> A total of four tablet types, varying in size, shape, and coating thickness were assessed using Optical Coherence Tomography and X-ray Computed Tomography. The data was then compared to baseline reference values gathered by examining tablets with a Confocal Microscope. A second trial was performed using an alternative Optical Coherence Tomography instrument to verify the accuracy of the data. The methods were also evaluated on additional criteria utilizing a Pugh Matrix. <b>Results</b>: The initial Optical Coherence Tomography yielded measurements that were inconsistent with the values provided by the control for three of the four tablet types; however, the follow-up study provided values within an acceptable range. The X-ray Computed Tomography also provided accurate measurements but presented challenges for precision in relation to the instrument's resolution capabilities. Based on the assessment of selected criteria, Optical Coherence Tomography is ideal for all clear-coated tablets, while X-ray Computed Tomography is better suited for small tablets with either opaque or clear coats. <b>Conclusions:</b> Optical Coherence Tomography, X-ray Computed Tomography, and the use of a Confocal Microscope are all viable methods for measuring the film coat thickness of tablets. Method selection is not absolute and depends on factors such as safety, ease of use, adaptability, and tablet characteristics. The results of this study will help provide guidance for selecting the most appropriate method for measuring the film coat thickness of a specific tablet.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473543/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating Optical Coherence Tomography and X-Ray Computed Tomography to Measure Tablet Film Coat Thickness.\",\"authors\":\"Emily Sanchez, Trent Eastman, Jennifer Potter, Robert Meyer\",\"doi\":\"10.3390/pharmaceutics17091225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objective:</b> Film coatings are vital components of many pharmaceutical products consumed orally in solid dosage form, and the optimization of the film coating unit operation is critical to the success of these products. It is essential to maintain adequate film coat thickness on tablets to ensure the elegance, mechanical integrity, and controlled-release functionality of active pharmaceutical ingredients. We aim to evaluate techniques for measuring the film coat thickness of tablets in the pharmaceutical drug product development space as current research primarily focuses on in-line methods at the manufacturing scale. <b>Methods:</b> A total of four tablet types, varying in size, shape, and coating thickness were assessed using Optical Coherence Tomography and X-ray Computed Tomography. The data was then compared to baseline reference values gathered by examining tablets with a Confocal Microscope. A second trial was performed using an alternative Optical Coherence Tomography instrument to verify the accuracy of the data. The methods were also evaluated on additional criteria utilizing a Pugh Matrix. <b>Results</b>: The initial Optical Coherence Tomography yielded measurements that were inconsistent with the values provided by the control for three of the four tablet types; however, the follow-up study provided values within an acceptable range. The X-ray Computed Tomography also provided accurate measurements but presented challenges for precision in relation to the instrument's resolution capabilities. Based on the assessment of selected criteria, Optical Coherence Tomography is ideal for all clear-coated tablets, while X-ray Computed Tomography is better suited for small tablets with either opaque or clear coats. <b>Conclusions:</b> Optical Coherence Tomography, X-ray Computed Tomography, and the use of a Confocal Microscope are all viable methods for measuring the film coat thickness of tablets. Method selection is not absolute and depends on factors such as safety, ease of use, adaptability, and tablet characteristics. The results of this study will help provide guidance for selecting the most appropriate method for measuring the film coat thickness of a specific tablet.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473543/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics17091225\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091225","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Evaluating Optical Coherence Tomography and X-Ray Computed Tomography to Measure Tablet Film Coat Thickness.
Background/Objective: Film coatings are vital components of many pharmaceutical products consumed orally in solid dosage form, and the optimization of the film coating unit operation is critical to the success of these products. It is essential to maintain adequate film coat thickness on tablets to ensure the elegance, mechanical integrity, and controlled-release functionality of active pharmaceutical ingredients. We aim to evaluate techniques for measuring the film coat thickness of tablets in the pharmaceutical drug product development space as current research primarily focuses on in-line methods at the manufacturing scale. Methods: A total of four tablet types, varying in size, shape, and coating thickness were assessed using Optical Coherence Tomography and X-ray Computed Tomography. The data was then compared to baseline reference values gathered by examining tablets with a Confocal Microscope. A second trial was performed using an alternative Optical Coherence Tomography instrument to verify the accuracy of the data. The methods were also evaluated on additional criteria utilizing a Pugh Matrix. Results: The initial Optical Coherence Tomography yielded measurements that were inconsistent with the values provided by the control for three of the four tablet types; however, the follow-up study provided values within an acceptable range. The X-ray Computed Tomography also provided accurate measurements but presented challenges for precision in relation to the instrument's resolution capabilities. Based on the assessment of selected criteria, Optical Coherence Tomography is ideal for all clear-coated tablets, while X-ray Computed Tomography is better suited for small tablets with either opaque or clear coats. Conclusions: Optical Coherence Tomography, X-ray Computed Tomography, and the use of a Confocal Microscope are all viable methods for measuring the film coat thickness of tablets. Method selection is not absolute and depends on factors such as safety, ease of use, adaptability, and tablet characteristics. The results of this study will help provide guidance for selecting the most appropriate method for measuring the film coat thickness of a specific tablet.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.