破解血脑屏障密码:新一代神经治疗的合理纳米材料设计。

IF 5.5 3区 医学 Q1 PHARMACOLOGY & PHARMACY
Lucio Nájera-Maldonado, Mariana Parra-González, Esperanza Peralta-Cuevas, Ashley J Gutierrez-Onofre, Igor Garcia-Atutxa, Francisca Villanueva-Flores
{"title":"破解血脑屏障密码:新一代神经治疗的合理纳米材料设计。","authors":"Lucio Nájera-Maldonado, Mariana Parra-González, Esperanza Peralta-Cuevas, Ashley J Gutierrez-Onofre, Igor Garcia-Atutxa, Francisca Villanueva-Flores","doi":"10.3390/pharmaceutics17091169","DOIUrl":null,"url":null,"abstract":"<p><p>This review provides a mechanistic framework to strategically design nanoparticles capable of efficiently crossing the blood-brain barrier (BBB), a critical limitation in neurological treatments. We systematically analyze nanoparticle-BBB transport mechanisms, including receptor-mediated transcytosis, adsorptive-mediated transcytosis, and transient barrier modulation. Essential nanoparticle parameters (size, shape, stiffness, surface charge, and biofunctionalization) are evaluated for their role in enhancing brain targeting. For instance, receptor-targeted nanoparticles can significantly enhance brain uptake, achieving levels of up to 17.2% injected dose per gram (ID/g) in preclinical glioma models. Additionally, validated preclinical models (human-derived in vitro systems, rodents, and non-human primates) and advanced imaging techniques crucial for assessing nanoparticle performance are discussed. Distinct from prior BBB nanocarrier reviews that primarily catalogue mechanisms, this work (i) derives quantitative 'design windows' (size 10-100 nm, aspect ratio ~2-5, near-neutral ζ) linked to transcytosis efficiency, (ii) cross-walks human-relevant in vitro/in vivo models (including TEER thresholds and NHP evidence) into a translational decision guide, and (iii) integrates regulatory/toxicology readiness (ISO 10993-4, FDA/EMA, ICH) into practical checklists. We also curate recent (2020-2025) %ID/g brain-uptake data across lipidic, polymeric, protein, inorganic, and hybrid vectors to provide actionable, evidence-based rules for BBB design.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473768/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cracking the Blood-Brain Barrier Code: Rational Nanomaterial Design for Next-Generation Neurological Therapies.\",\"authors\":\"Lucio Nájera-Maldonado, Mariana Parra-González, Esperanza Peralta-Cuevas, Ashley J Gutierrez-Onofre, Igor Garcia-Atutxa, Francisca Villanueva-Flores\",\"doi\":\"10.3390/pharmaceutics17091169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review provides a mechanistic framework to strategically design nanoparticles capable of efficiently crossing the blood-brain barrier (BBB), a critical limitation in neurological treatments. We systematically analyze nanoparticle-BBB transport mechanisms, including receptor-mediated transcytosis, adsorptive-mediated transcytosis, and transient barrier modulation. Essential nanoparticle parameters (size, shape, stiffness, surface charge, and biofunctionalization) are evaluated for their role in enhancing brain targeting. For instance, receptor-targeted nanoparticles can significantly enhance brain uptake, achieving levels of up to 17.2% injected dose per gram (ID/g) in preclinical glioma models. Additionally, validated preclinical models (human-derived in vitro systems, rodents, and non-human primates) and advanced imaging techniques crucial for assessing nanoparticle performance are discussed. Distinct from prior BBB nanocarrier reviews that primarily catalogue mechanisms, this work (i) derives quantitative 'design windows' (size 10-100 nm, aspect ratio ~2-5, near-neutral ζ) linked to transcytosis efficiency, (ii) cross-walks human-relevant in vitro/in vivo models (including TEER thresholds and NHP evidence) into a translational decision guide, and (iii) integrates regulatory/toxicology readiness (ISO 10993-4, FDA/EMA, ICH) into practical checklists. We also curate recent (2020-2025) %ID/g brain-uptake data across lipidic, polymeric, protein, inorganic, and hybrid vectors to provide actionable, evidence-based rules for BBB design.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473768/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics17091169\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091169","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

这篇综述提供了一个机制框架来策略性地设计能够有效穿过血脑屏障(BBB)的纳米颗粒,这是神经治疗的一个关键限制。我们系统地分析了纳米颗粒-血脑屏障的转运机制,包括受体介导的胞吞作用、吸附介导的胞吞作用和瞬态屏障调节。基本的纳米颗粒参数(大小、形状、硬度、表面电荷和生物功能)在增强脑靶向中的作用进行了评估。例如,受体靶向纳米颗粒可以显著增强大脑摄取,在临床前胶质瘤模型中达到每克注射剂量(ID/g)高达17.2%的水平。此外,验证的临床前模型(人类来源的体外系统,啮齿动物和非人灵长类动物)和先进的成像技术对评估纳米颗粒的性能至关重要的讨论。与先前主要目录机制的BBB纳米载体评论不同,这项工作(i)导出定量的“设计窗口”(尺寸10-100 nm,宽宽比~2-5,近中性ζ)与胞溶效率相关,(ii)交叉步行人类相关的体外/体内模型(包括TEER阈值和NHP证据)转化决策指南,(iii)将监管/毒理学准备(ISO 10993-4, FDA/EMA, ICH)整合到实际检查清单中。我们还整理了近期(2020-2025)脂质、聚合物、蛋白质、无机和混合载体的%ID/g脑摄取数据,为BBB设计提供可操作的、基于证据的规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cracking the Blood-Brain Barrier Code: Rational Nanomaterial Design for Next-Generation Neurological Therapies.

Cracking the Blood-Brain Barrier Code: Rational Nanomaterial Design for Next-Generation Neurological Therapies.

Cracking the Blood-Brain Barrier Code: Rational Nanomaterial Design for Next-Generation Neurological Therapies.

Cracking the Blood-Brain Barrier Code: Rational Nanomaterial Design for Next-Generation Neurological Therapies.

This review provides a mechanistic framework to strategically design nanoparticles capable of efficiently crossing the blood-brain barrier (BBB), a critical limitation in neurological treatments. We systematically analyze nanoparticle-BBB transport mechanisms, including receptor-mediated transcytosis, adsorptive-mediated transcytosis, and transient barrier modulation. Essential nanoparticle parameters (size, shape, stiffness, surface charge, and biofunctionalization) are evaluated for their role in enhancing brain targeting. For instance, receptor-targeted nanoparticles can significantly enhance brain uptake, achieving levels of up to 17.2% injected dose per gram (ID/g) in preclinical glioma models. Additionally, validated preclinical models (human-derived in vitro systems, rodents, and non-human primates) and advanced imaging techniques crucial for assessing nanoparticle performance are discussed. Distinct from prior BBB nanocarrier reviews that primarily catalogue mechanisms, this work (i) derives quantitative 'design windows' (size 10-100 nm, aspect ratio ~2-5, near-neutral ζ) linked to transcytosis efficiency, (ii) cross-walks human-relevant in vitro/in vivo models (including TEER thresholds and NHP evidence) into a translational decision guide, and (iii) integrates regulatory/toxicology readiness (ISO 10993-4, FDA/EMA, ICH) into practical checklists. We also curate recent (2020-2025) %ID/g brain-uptake data across lipidic, polymeric, protein, inorganic, and hybrid vectors to provide actionable, evidence-based rules for BBB design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutics
Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍: Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications,  and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信