Pablo Miranda, Luis Ignacio Tártara, Analía Castro, Patricia Zimet, Ricardo Faccio, Santiago Daniel Palma, Álvaro W Mombrú, Helena Pardo
{"title":"含有地塞米松和莫西沙星的缓释可生物降解内窥镜植入物:发展和体内初步评估。","authors":"Pablo Miranda, Luis Ignacio Tártara, Analía Castro, Patricia Zimet, Ricardo Faccio, Santiago Daniel Palma, Álvaro W Mombrú, Helena Pardo","doi":"10.3390/pharmaceutics17091191","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives</b>: We report the development of a novel intraocular sustained-release implantable pharmaceutical formulation, designed to be placed in the anterior chamber of the eye after cataract surgery. The device is intended to reduce postoperative inflammation, and to prevent opportunistic bacterial infections that may lead to endophthalmitis. <b>Methods</b>: The implants were produced via hot-melt extrusion, using a twin-screw extruder to process a homogeneous mixture of polylactide-co-glycolic acid, moxifloxacin hydrochloride (MOX HCl) and dexamethasone (DEX). Quality control tests included drug content determination, release rate profile evaluation, and several instrumental characterization techniques (scanning electron microscopy (SEM), confocal Raman microscopy, differential scanning calorimetry, and X-ray diffraction). Long-term and accelerated stability tests were also performed, following ICH guidelines. Sterilization was achieved by exposing samples to gamma radiation. In vivo exploratory studies were carried out in healthy rabbits to evaluate the safety and overall performance of the implantable formulation. <b>Results</b>: In terms of quality control, drug content was found to be homogeneously distributed throughout the implants, and it also met the label claim. In vitro release rate was constant for MOX HCl, but non-linear for DEX, increasing over time. In vivo preliminary tests showed that the inserts completely biodegraded within approximately 20 days. No clinical signs of anterior segment toxic syndrome or statistically significant intraocular pressure differences were found between treatment and control groups. <b>Conclusions</b>: The implants developed in this study can act as sustained-release depots for the delivery of both DEX and MOX HCl, and are biocompatible with ocular structures.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473935/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sustained-Release Biodegradable Intracameral Implants Containing Dexamethasone and Moxifloxacin: Development and In Vivo Primary Assessment.\",\"authors\":\"Pablo Miranda, Luis Ignacio Tártara, Analía Castro, Patricia Zimet, Ricardo Faccio, Santiago Daniel Palma, Álvaro W Mombrú, Helena Pardo\",\"doi\":\"10.3390/pharmaceutics17091191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives</b>: We report the development of a novel intraocular sustained-release implantable pharmaceutical formulation, designed to be placed in the anterior chamber of the eye after cataract surgery. The device is intended to reduce postoperative inflammation, and to prevent opportunistic bacterial infections that may lead to endophthalmitis. <b>Methods</b>: The implants were produced via hot-melt extrusion, using a twin-screw extruder to process a homogeneous mixture of polylactide-co-glycolic acid, moxifloxacin hydrochloride (MOX HCl) and dexamethasone (DEX). Quality control tests included drug content determination, release rate profile evaluation, and several instrumental characterization techniques (scanning electron microscopy (SEM), confocal Raman microscopy, differential scanning calorimetry, and X-ray diffraction). Long-term and accelerated stability tests were also performed, following ICH guidelines. Sterilization was achieved by exposing samples to gamma radiation. In vivo exploratory studies were carried out in healthy rabbits to evaluate the safety and overall performance of the implantable formulation. <b>Results</b>: In terms of quality control, drug content was found to be homogeneously distributed throughout the implants, and it also met the label claim. In vitro release rate was constant for MOX HCl, but non-linear for DEX, increasing over time. In vivo preliminary tests showed that the inserts completely biodegraded within approximately 20 days. No clinical signs of anterior segment toxic syndrome or statistically significant intraocular pressure differences were found between treatment and control groups. <b>Conclusions</b>: The implants developed in this study can act as sustained-release depots for the delivery of both DEX and MOX HCl, and are biocompatible with ocular structures.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473935/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics17091191\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091191","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Sustained-Release Biodegradable Intracameral Implants Containing Dexamethasone and Moxifloxacin: Development and In Vivo Primary Assessment.
Background/Objectives: We report the development of a novel intraocular sustained-release implantable pharmaceutical formulation, designed to be placed in the anterior chamber of the eye after cataract surgery. The device is intended to reduce postoperative inflammation, and to prevent opportunistic bacterial infections that may lead to endophthalmitis. Methods: The implants were produced via hot-melt extrusion, using a twin-screw extruder to process a homogeneous mixture of polylactide-co-glycolic acid, moxifloxacin hydrochloride (MOX HCl) and dexamethasone (DEX). Quality control tests included drug content determination, release rate profile evaluation, and several instrumental characterization techniques (scanning electron microscopy (SEM), confocal Raman microscopy, differential scanning calorimetry, and X-ray diffraction). Long-term and accelerated stability tests were also performed, following ICH guidelines. Sterilization was achieved by exposing samples to gamma radiation. In vivo exploratory studies were carried out in healthy rabbits to evaluate the safety and overall performance of the implantable formulation. Results: In terms of quality control, drug content was found to be homogeneously distributed throughout the implants, and it also met the label claim. In vitro release rate was constant for MOX HCl, but non-linear for DEX, increasing over time. In vivo preliminary tests showed that the inserts completely biodegraded within approximately 20 days. No clinical signs of anterior segment toxic syndrome or statistically significant intraocular pressure differences were found between treatment and control groups. Conclusions: The implants developed in this study can act as sustained-release depots for the delivery of both DEX and MOX HCl, and are biocompatible with ocular structures.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.