{"title":"基于肝素的生长因子输送平台:综述。","authors":"Ji-Feng Wang, Jeng-Shiung Jan, Jin-Jia Hu","doi":"10.3390/pharmaceutics17091145","DOIUrl":null,"url":null,"abstract":"<p><p>Heparin-based delivery platforms have gained increasing attention in regenerative medicine due to their exceptional affinity for growth factors and versatility in structural and functional design. This review first introduces the molecular biosynthesis and physicochemical diversity of heparin, which underpin its binding selectivity and degradability. It then categorizes the delivery platforms into microspheres, nanofibers, and hydrogels, with detailed discussions on their fabrication techniques, biofunctional integration of heparin, and release kinetics. Special focus is given to stimuli-responsive systems-including pH-, enzyme-, redox-, thermal-, and ultrasound-sensitive designs-which allow spatiotemporal control over growth factor release. The platform applications are organized by tissue types, encompassing soft tissue regeneration, bone and cartilage repair, neuroregeneration, cardiovascular regeneration, wound healing, anti-fibrotic therapies, and cancer microenvironment modulation. Each section provides recent case studies demonstrating how heparin enhances the bioactivity, localization, and therapeutic efficacy of pro-regenerative or anti-pathologic growth factors. Collectively, these insights highlight heparin's dual role as both a carrier and modulator, positioning it as a pivotal component in next-generation, precision-targeted delivery systems.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472959/pdf/","citationCount":"0","resultStr":"{\"title\":\"Heparin-Based Growth Factor Delivery Platforms: A Review.\",\"authors\":\"Ji-Feng Wang, Jeng-Shiung Jan, Jin-Jia Hu\",\"doi\":\"10.3390/pharmaceutics17091145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heparin-based delivery platforms have gained increasing attention in regenerative medicine due to their exceptional affinity for growth factors and versatility in structural and functional design. This review first introduces the molecular biosynthesis and physicochemical diversity of heparin, which underpin its binding selectivity and degradability. It then categorizes the delivery platforms into microspheres, nanofibers, and hydrogels, with detailed discussions on their fabrication techniques, biofunctional integration of heparin, and release kinetics. Special focus is given to stimuli-responsive systems-including pH-, enzyme-, redox-, thermal-, and ultrasound-sensitive designs-which allow spatiotemporal control over growth factor release. The platform applications are organized by tissue types, encompassing soft tissue regeneration, bone and cartilage repair, neuroregeneration, cardiovascular regeneration, wound healing, anti-fibrotic therapies, and cancer microenvironment modulation. Each section provides recent case studies demonstrating how heparin enhances the bioactivity, localization, and therapeutic efficacy of pro-regenerative or anti-pathologic growth factors. Collectively, these insights highlight heparin's dual role as both a carrier and modulator, positioning it as a pivotal component in next-generation, precision-targeted delivery systems.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472959/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics17091145\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091145","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Heparin-Based Growth Factor Delivery Platforms: A Review.
Heparin-based delivery platforms have gained increasing attention in regenerative medicine due to their exceptional affinity for growth factors and versatility in structural and functional design. This review first introduces the molecular biosynthesis and physicochemical diversity of heparin, which underpin its binding selectivity and degradability. It then categorizes the delivery platforms into microspheres, nanofibers, and hydrogels, with detailed discussions on their fabrication techniques, biofunctional integration of heparin, and release kinetics. Special focus is given to stimuli-responsive systems-including pH-, enzyme-, redox-, thermal-, and ultrasound-sensitive designs-which allow spatiotemporal control over growth factor release. The platform applications are organized by tissue types, encompassing soft tissue regeneration, bone and cartilage repair, neuroregeneration, cardiovascular regeneration, wound healing, anti-fibrotic therapies, and cancer microenvironment modulation. Each section provides recent case studies demonstrating how heparin enhances the bioactivity, localization, and therapeutic efficacy of pro-regenerative or anti-pathologic growth factors. Collectively, these insights highlight heparin's dual role as both a carrier and modulator, positioning it as a pivotal component in next-generation, precision-targeted delivery systems.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.