Yevheniy-Yuliy Peresh, Zdenko Špitalský, Mohamed Shaalan, Eva Špitalská
{"title":"壳聚糖、硒和纳米银在Vero细胞中的抗立克次体活性。","authors":"Yevheniy-Yuliy Peresh, Zdenko Špitalský, Mohamed Shaalan, Eva Špitalská","doi":"10.3390/pathogens14090885","DOIUrl":null,"url":null,"abstract":"<p><p>Nanoparticles have emerged as innovative tools for combating bacterial infections, offering a potential solution to antibiotic resistance and the limitations of conventional antimicrobials. Nanoparticles exhibit antibacterial activity through multiple mechanisms, including oxidative stress induction, metal ion release, direct membrane damage, disruption of DNA and proteins, and indirect immune system enhancement. <i>Rickettsia helvetica</i>, <i>R. monacensis</i>, <i>R. slovaca</i>, and <i>R. conorii</i> subsp. <i>raoultii</i> are tick-borne pathogens transmitted by <i>Ixodes ricinus</i>, <i>Dermacentor reticulatus</i>, and <i>D. marginatus</i> ticks across Europe causing spotted fever rickettsiosis. While rickettsioses are successfully treated with antibiotics, resistance of rickettsiae to antimicrobial therapy has been reported. Here, we evaluated the anti-rickettsial activity of silver (AgNPs), selenium (SeNPs), and chitosan (CSNPs) nanoparticles against <i>R. conorii</i> subsp. <i>caspia</i>, a tick-borne bacterial pathogen, in African green monkey kidney cell line (Vero). At their highest non-cytotoxic concentrations, CSNPs exhibited the strongest inhibitory effect (87%). SeNPs also significantly reduced bacterial load (76%), although their efficacy was constrained by cytotoxicity at higher doses. In contrast, AgNPs did not show significant activity under the tested conditions. The differences observed among nanoparticles reflect both the antimicrobial properties and host cell tolerance limits. These findings highlight CSNPs and SeNPs as promising candidates for further development of nanoparticle-based strategies to combat intracellular, tick-borne pathogens.</p>","PeriodicalId":19758,"journal":{"name":"Pathogens","volume":"14 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472819/pdf/","citationCount":"0","resultStr":"{\"title\":\"Anti-Rickettsial Activity of Chitosan, Selenium, and Silver Nanoparticles: Efficacy in Vero Cells.\",\"authors\":\"Yevheniy-Yuliy Peresh, Zdenko Špitalský, Mohamed Shaalan, Eva Špitalská\",\"doi\":\"10.3390/pathogens14090885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nanoparticles have emerged as innovative tools for combating bacterial infections, offering a potential solution to antibiotic resistance and the limitations of conventional antimicrobials. Nanoparticles exhibit antibacterial activity through multiple mechanisms, including oxidative stress induction, metal ion release, direct membrane damage, disruption of DNA and proteins, and indirect immune system enhancement. <i>Rickettsia helvetica</i>, <i>R. monacensis</i>, <i>R. slovaca</i>, and <i>R. conorii</i> subsp. <i>raoultii</i> are tick-borne pathogens transmitted by <i>Ixodes ricinus</i>, <i>Dermacentor reticulatus</i>, and <i>D. marginatus</i> ticks across Europe causing spotted fever rickettsiosis. While rickettsioses are successfully treated with antibiotics, resistance of rickettsiae to antimicrobial therapy has been reported. Here, we evaluated the anti-rickettsial activity of silver (AgNPs), selenium (SeNPs), and chitosan (CSNPs) nanoparticles against <i>R. conorii</i> subsp. <i>caspia</i>, a tick-borne bacterial pathogen, in African green monkey kidney cell line (Vero). At their highest non-cytotoxic concentrations, CSNPs exhibited the strongest inhibitory effect (87%). SeNPs also significantly reduced bacterial load (76%), although their efficacy was constrained by cytotoxicity at higher doses. In contrast, AgNPs did not show significant activity under the tested conditions. The differences observed among nanoparticles reflect both the antimicrobial properties and host cell tolerance limits. These findings highlight CSNPs and SeNPs as promising candidates for further development of nanoparticle-based strategies to combat intracellular, tick-borne pathogens.</p>\",\"PeriodicalId\":19758,\"journal\":{\"name\":\"Pathogens\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472819/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pathogens14090885\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pathogens14090885","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Anti-Rickettsial Activity of Chitosan, Selenium, and Silver Nanoparticles: Efficacy in Vero Cells.
Nanoparticles have emerged as innovative tools for combating bacterial infections, offering a potential solution to antibiotic resistance and the limitations of conventional antimicrobials. Nanoparticles exhibit antibacterial activity through multiple mechanisms, including oxidative stress induction, metal ion release, direct membrane damage, disruption of DNA and proteins, and indirect immune system enhancement. Rickettsia helvetica, R. monacensis, R. slovaca, and R. conorii subsp. raoultii are tick-borne pathogens transmitted by Ixodes ricinus, Dermacentor reticulatus, and D. marginatus ticks across Europe causing spotted fever rickettsiosis. While rickettsioses are successfully treated with antibiotics, resistance of rickettsiae to antimicrobial therapy has been reported. Here, we evaluated the anti-rickettsial activity of silver (AgNPs), selenium (SeNPs), and chitosan (CSNPs) nanoparticles against R. conorii subsp. caspia, a tick-borne bacterial pathogen, in African green monkey kidney cell line (Vero). At their highest non-cytotoxic concentrations, CSNPs exhibited the strongest inhibitory effect (87%). SeNPs also significantly reduced bacterial load (76%), although their efficacy was constrained by cytotoxicity at higher doses. In contrast, AgNPs did not show significant activity under the tested conditions. The differences observed among nanoparticles reflect both the antimicrobial properties and host cell tolerance limits. These findings highlight CSNPs and SeNPs as promising candidates for further development of nanoparticle-based strategies to combat intracellular, tick-borne pathogens.
期刊介绍:
Pathogens (ISSN 2076-0817) publishes reviews, regular research papers and short notes on all aspects of pathogens and pathogen-host interactions. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.