Lei Zhang, Ding-Ding Zhou, Jia Feng, Zhi-Jun Liao, Xian-Long Shu, Rui-Meng Yang, Yong-Chao Gao, Hong-Hao Zhou, Wei Zhang, You Zou, Rong Liu
{"title":"肠道真菌特征及其对免疫检查点抑制剂疗效的影响:一项多队列荟萃分析。","authors":"Lei Zhang, Ding-Ding Zhou, Jia Feng, Zhi-Jun Liao, Xian-Long Shu, Rui-Meng Yang, Yong-Chao Gao, Hong-Hao Zhou, Wei Zhang, You Zou, Rong Liu","doi":"10.1038/s41522-025-00827-2","DOIUrl":null,"url":null,"abstract":"<p><p>Gut microbiota influence on the effectiveness of immune checkpoint inhibitors (ICIs), but research on fungi-an essential component of the microbiome-has been limited. This multi-cohort meta-analysis of 976 fecal metagenomes across 8 cohorts, representing melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC), identified fungal species associated with ICI efficacy. In melanoma, Rhizophagus irregularis and Debaryomyces hansenii were correlated with poor responses, whereas Aspergillus avenaceus was associated with great efficacy. In NSCLC, an increased abundance of Aspergillus pseudonomiae was associated with a favorable prognosis. Stronger bacterial-fungal interactions were observed in responders. The presence of certain fungi in fungal enterotypes, like Aspergillus or Saccharomyces, was linked to better efficacy to ICIs. Mouse models revealed Debaryomyces hansenii impaired ICI efficacy by reducing CD8+ T cells. Our findings highlight specific fungal signatures that may inform strategies to enhance ICI efficacy and encourage further research on microbial impacts on treatment outcomes.</p>","PeriodicalId":19370,"journal":{"name":"npj Biofilms and Microbiomes","volume":"11 1","pages":"188"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12475161/pdf/","citationCount":"0","resultStr":"{\"title\":\"Intestinal fungal signatures and their impact on immune checkpoint inhibitor efficacy: a multi-cohort meta-analysis.\",\"authors\":\"Lei Zhang, Ding-Ding Zhou, Jia Feng, Zhi-Jun Liao, Xian-Long Shu, Rui-Meng Yang, Yong-Chao Gao, Hong-Hao Zhou, Wei Zhang, You Zou, Rong Liu\",\"doi\":\"10.1038/s41522-025-00827-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gut microbiota influence on the effectiveness of immune checkpoint inhibitors (ICIs), but research on fungi-an essential component of the microbiome-has been limited. This multi-cohort meta-analysis of 976 fecal metagenomes across 8 cohorts, representing melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC), identified fungal species associated with ICI efficacy. In melanoma, Rhizophagus irregularis and Debaryomyces hansenii were correlated with poor responses, whereas Aspergillus avenaceus was associated with great efficacy. In NSCLC, an increased abundance of Aspergillus pseudonomiae was associated with a favorable prognosis. Stronger bacterial-fungal interactions were observed in responders. The presence of certain fungi in fungal enterotypes, like Aspergillus or Saccharomyces, was linked to better efficacy to ICIs. Mouse models revealed Debaryomyces hansenii impaired ICI efficacy by reducing CD8+ T cells. Our findings highlight specific fungal signatures that may inform strategies to enhance ICI efficacy and encourage further research on microbial impacts on treatment outcomes.</p>\",\"PeriodicalId\":19370,\"journal\":{\"name\":\"npj Biofilms and Microbiomes\",\"volume\":\"11 1\",\"pages\":\"188\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12475161/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biofilms and Microbiomes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41522-025-00827-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biofilms and Microbiomes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41522-025-00827-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Intestinal fungal signatures and their impact on immune checkpoint inhibitor efficacy: a multi-cohort meta-analysis.
Gut microbiota influence on the effectiveness of immune checkpoint inhibitors (ICIs), but research on fungi-an essential component of the microbiome-has been limited. This multi-cohort meta-analysis of 976 fecal metagenomes across 8 cohorts, representing melanoma, non-small cell lung cancer (NSCLC), and renal cell carcinoma (RCC), identified fungal species associated with ICI efficacy. In melanoma, Rhizophagus irregularis and Debaryomyces hansenii were correlated with poor responses, whereas Aspergillus avenaceus was associated with great efficacy. In NSCLC, an increased abundance of Aspergillus pseudonomiae was associated with a favorable prognosis. Stronger bacterial-fungal interactions were observed in responders. The presence of certain fungi in fungal enterotypes, like Aspergillus or Saccharomyces, was linked to better efficacy to ICIs. Mouse models revealed Debaryomyces hansenii impaired ICI efficacy by reducing CD8+ T cells. Our findings highlight specific fungal signatures that may inform strategies to enhance ICI efficacy and encourage further research on microbial impacts on treatment outcomes.
期刊介绍:
npj Biofilms and Microbiomes is a comprehensive platform that promotes research on biofilms and microbiomes across various scientific disciplines. The journal facilitates cross-disciplinary discussions to enhance our understanding of the biology, ecology, and communal functions of biofilms, populations, and communities. It also focuses on applications in the medical, environmental, and engineering domains. The scope of the journal encompasses all aspects of the field, ranging from cell-cell communication and single cell interactions to the microbiomes of humans, animals, plants, and natural and built environments. The journal also welcomes research on the virome, phageome, mycome, and fungome. It publishes both applied science and theoretical work. As an open access and interdisciplinary journal, its primary goal is to publish significant scientific advancements in microbial biofilms and microbiomes. The journal enables discussions that span multiple disciplines and contributes to our understanding of the social behavior of microbial biofilm populations and communities, and their impact on life, human health, and the environment.