{"title":"突尼斯的基因组波:动态、多样性和系统发育分析。","authors":"Yasmine Chaari, Sondes Haddad-Boubaker, Haifa Khemiri, Wasfi Fares, Anissa Chouikha, Cesare Camma, Alessio Lorusso, Hanen Smaoui, Khaoula Meftah, Ouafa Kallala, Abdelhalim Trabelsi, Amel Chtourou, Awatef Taktak, Olfa Bahri, Manel Hamdoun, Yassine Chaabouni, Henda Touzi, Amel Sadraoui, Zina Meddeb, Nissaf Ben Alaya, Mariem Gdoura, Henda Triki","doi":"10.3390/microorganisms13092162","DOIUrl":null,"url":null,"abstract":"<p><p>The SARS-CoV-2 Omicron variant has exhibited a rapid progression around the world, but its molecular insights in North Africa remain understudied. This study characterizes the genetic diversity, dynamics, and evolutionary trends of the Omicron variant in Tunisia over a 33-month period (December 2021-August 2024). In total, 928 high-quality whole-genome sequences were considered in this study, of which 559 were retrieved from the GISAID database and 369 were generated in our laboratory. Phylogenetic analysis of the dominant subvariants (BA.1, BA.2, and BA.5) was performed using IQ-TREE. BA.2 was the predominant subvariant (38%), followed by BA.1 (24.0%), Omicron recombinants (19%), and BA.5 (18%). BA.2 diversified into JN, KP, and BN sub-lineages. Recombinants were dominated by XBB (98.8%), primarily including EG.4, XBB.1.5, and XBB.2.3.11, with rare detection of XDK and XDQ. Phylogenetic analysis revealed local clusters in BA.1, BA.2, and BA.5 alongside imported strains. Tunisia's Omicron wave was mainly driven by BA.2 and its recombinants, with evidence of localized viral evolution and sporadic introductions. The detection of rare recombinants underlines the importance of integrating regional genomic surveillance with epidemiological data in order to help guide future public health strategies.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473128/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Omicron Wave in Tunisia: Dynamic, Diversity, and Phylogenetic Analyses.\",\"authors\":\"Yasmine Chaari, Sondes Haddad-Boubaker, Haifa Khemiri, Wasfi Fares, Anissa Chouikha, Cesare Camma, Alessio Lorusso, Hanen Smaoui, Khaoula Meftah, Ouafa Kallala, Abdelhalim Trabelsi, Amel Chtourou, Awatef Taktak, Olfa Bahri, Manel Hamdoun, Yassine Chaabouni, Henda Touzi, Amel Sadraoui, Zina Meddeb, Nissaf Ben Alaya, Mariem Gdoura, Henda Triki\",\"doi\":\"10.3390/microorganisms13092162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The SARS-CoV-2 Omicron variant has exhibited a rapid progression around the world, but its molecular insights in North Africa remain understudied. This study characterizes the genetic diversity, dynamics, and evolutionary trends of the Omicron variant in Tunisia over a 33-month period (December 2021-August 2024). In total, 928 high-quality whole-genome sequences were considered in this study, of which 559 were retrieved from the GISAID database and 369 were generated in our laboratory. Phylogenetic analysis of the dominant subvariants (BA.1, BA.2, and BA.5) was performed using IQ-TREE. BA.2 was the predominant subvariant (38%), followed by BA.1 (24.0%), Omicron recombinants (19%), and BA.5 (18%). BA.2 diversified into JN, KP, and BN sub-lineages. Recombinants were dominated by XBB (98.8%), primarily including EG.4, XBB.1.5, and XBB.2.3.11, with rare detection of XDK and XDQ. Phylogenetic analysis revealed local clusters in BA.1, BA.2, and BA.5 alongside imported strains. Tunisia's Omicron wave was mainly driven by BA.2 and its recombinants, with evidence of localized viral evolution and sporadic introductions. The detection of rare recombinants underlines the importance of integrating regional genomic surveillance with epidemiological data in order to help guide future public health strategies.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473128/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms13092162\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13092162","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
The Omicron Wave in Tunisia: Dynamic, Diversity, and Phylogenetic Analyses.
The SARS-CoV-2 Omicron variant has exhibited a rapid progression around the world, but its molecular insights in North Africa remain understudied. This study characterizes the genetic diversity, dynamics, and evolutionary trends of the Omicron variant in Tunisia over a 33-month period (December 2021-August 2024). In total, 928 high-quality whole-genome sequences were considered in this study, of which 559 were retrieved from the GISAID database and 369 were generated in our laboratory. Phylogenetic analysis of the dominant subvariants (BA.1, BA.2, and BA.5) was performed using IQ-TREE. BA.2 was the predominant subvariant (38%), followed by BA.1 (24.0%), Omicron recombinants (19%), and BA.5 (18%). BA.2 diversified into JN, KP, and BN sub-lineages. Recombinants were dominated by XBB (98.8%), primarily including EG.4, XBB.1.5, and XBB.2.3.11, with rare detection of XDK and XDQ. Phylogenetic analysis revealed local clusters in BA.1, BA.2, and BA.5 alongside imported strains. Tunisia's Omicron wave was mainly driven by BA.2 and its recombinants, with evidence of localized viral evolution and sporadic introductions. The detection of rare recombinants underlines the importance of integrating regional genomic surveillance with epidemiological data in order to help guide future public health strategies.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.