{"title":"利用微生物力量打造可持续的未来食品系统。","authors":"Andreea Loredana Birgovan Rhazzali, Elena Simina Lakatos, Lucian Ionel Cioca, Natalia Lorela Paul, Sorin Daniel Vatca, Erzsebeth Kis, Roxana Lavinia Pacurariu","doi":"10.3390/microorganisms13092217","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms are transforming the way we address sustainability across agriculture, food production, waste remediation, bioenergy, and industrial bioprocessing, offering novel solutions for the food systems of tomorrow. This systematic review examines literature from the last twenty years in order to identify key advances, challenges, and future directions in harnessing microbial systems for sustainable applications, especially those underpinning a resilient future food system. The selected documents allowed a mapping of the most important trends: innovations based on metabolic engineering and omics, the use of integrated biorefineries, and digital monitoring platforms are emerging as catalysts for the transition, while high scaling costs, regulatory challenges, and low public acceptance continue to limit large-scale implementation. The analysis highlights both the major advantages (reducing ecological impact, valorizing waste, diversifying food sources) and the current limits of these technologies, proposing a multi-stakeholder roadmap to accelerate the transition to a circular bioeconomy and a low-carbon and climate-resilient food system.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472289/pdf/","citationCount":"0","resultStr":"{\"title\":\"Harnessing Microbial Power for a Sustainable Future Food System.\",\"authors\":\"Andreea Loredana Birgovan Rhazzali, Elena Simina Lakatos, Lucian Ionel Cioca, Natalia Lorela Paul, Sorin Daniel Vatca, Erzsebeth Kis, Roxana Lavinia Pacurariu\",\"doi\":\"10.3390/microorganisms13092217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microorganisms are transforming the way we address sustainability across agriculture, food production, waste remediation, bioenergy, and industrial bioprocessing, offering novel solutions for the food systems of tomorrow. This systematic review examines literature from the last twenty years in order to identify key advances, challenges, and future directions in harnessing microbial systems for sustainable applications, especially those underpinning a resilient future food system. The selected documents allowed a mapping of the most important trends: innovations based on metabolic engineering and omics, the use of integrated biorefineries, and digital monitoring platforms are emerging as catalysts for the transition, while high scaling costs, regulatory challenges, and low public acceptance continue to limit large-scale implementation. The analysis highlights both the major advantages (reducing ecological impact, valorizing waste, diversifying food sources) and the current limits of these technologies, proposing a multi-stakeholder roadmap to accelerate the transition to a circular bioeconomy and a low-carbon and climate-resilient food system.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472289/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms13092217\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13092217","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Harnessing Microbial Power for a Sustainable Future Food System.
Microorganisms are transforming the way we address sustainability across agriculture, food production, waste remediation, bioenergy, and industrial bioprocessing, offering novel solutions for the food systems of tomorrow. This systematic review examines literature from the last twenty years in order to identify key advances, challenges, and future directions in harnessing microbial systems for sustainable applications, especially those underpinning a resilient future food system. The selected documents allowed a mapping of the most important trends: innovations based on metabolic engineering and omics, the use of integrated biorefineries, and digital monitoring platforms are emerging as catalysts for the transition, while high scaling costs, regulatory challenges, and low public acceptance continue to limit large-scale implementation. The analysis highlights both the major advantages (reducing ecological impact, valorizing waste, diversifying food sources) and the current limits of these technologies, proposing a multi-stakeholder roadmap to accelerate the transition to a circular bioeconomy and a low-carbon and climate-resilient food system.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.