{"title":"桑树根际微环境对不同品种的响应","authors":"Chuanjie Chen, Haiyang Zhang, Xiaoyan Liang, Meng Li, Yinyu Gu","doi":"10.3390/microorganisms13092157","DOIUrl":null,"url":null,"abstract":"<p><p>Soil microbiomes have a crucial role in mulberry development; however, the correlation between the mulberry genotype and rhizosphere microenvironment has not been explored. The rhizosphere microbial community structure and function of rizhosphere bacteria and fungi in five mulberry cultivars and their interaction with soil chemical properties and agronomic traits were analyzed using Illumina-based sequencing. We demonstrated that the composition, structure, and assembly processes of rhizosphere bacteria and fungi exhibited significant differences among mulberry cultivars, and their response to soil chemical traits and leaf yield also varies. The correlations in the bacterial communities were more complex than in the fungal communities among the five cultivars. During the assembly process, bacteria were more stable than fungi. <i>Penicillium</i> and <i>Phytophthora</i> showed a positive correlation with leaf yield and were significantly enriched in the Canghai 12 rhizosphere soil, which exhibited the highest leaf production. <i>Bacillus</i> was a bacterium that showed a significant positive correlation with leaf yield. The saprotrophs exhibited the largest guild in terms of operational taxonomic unit richness. This research indicated that the mulberry genotype is one of the dominant factors in rhizosphere microorganism recruitment and assembly. These findings provide new insights into the complex microbial community soil-plant interaction and probiotic screening.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472325/pdf/","citationCount":"0","resultStr":"{\"title\":\"Response of Rhizosphere Microenvironment of Mulberry (<i>Morus alba</i> L.) to Different Cultivars.\",\"authors\":\"Chuanjie Chen, Haiyang Zhang, Xiaoyan Liang, Meng Li, Yinyu Gu\",\"doi\":\"10.3390/microorganisms13092157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Soil microbiomes have a crucial role in mulberry development; however, the correlation between the mulberry genotype and rhizosphere microenvironment has not been explored. The rhizosphere microbial community structure and function of rizhosphere bacteria and fungi in five mulberry cultivars and their interaction with soil chemical properties and agronomic traits were analyzed using Illumina-based sequencing. We demonstrated that the composition, structure, and assembly processes of rhizosphere bacteria and fungi exhibited significant differences among mulberry cultivars, and their response to soil chemical traits and leaf yield also varies. The correlations in the bacterial communities were more complex than in the fungal communities among the five cultivars. During the assembly process, bacteria were more stable than fungi. <i>Penicillium</i> and <i>Phytophthora</i> showed a positive correlation with leaf yield and were significantly enriched in the Canghai 12 rhizosphere soil, which exhibited the highest leaf production. <i>Bacillus</i> was a bacterium that showed a significant positive correlation with leaf yield. The saprotrophs exhibited the largest guild in terms of operational taxonomic unit richness. This research indicated that the mulberry genotype is one of the dominant factors in rhizosphere microorganism recruitment and assembly. These findings provide new insights into the complex microbial community soil-plant interaction and probiotic screening.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472325/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms13092157\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13092157","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Response of Rhizosphere Microenvironment of Mulberry (Morus alba L.) to Different Cultivars.
Soil microbiomes have a crucial role in mulberry development; however, the correlation between the mulberry genotype and rhizosphere microenvironment has not been explored. The rhizosphere microbial community structure and function of rizhosphere bacteria and fungi in five mulberry cultivars and their interaction with soil chemical properties and agronomic traits were analyzed using Illumina-based sequencing. We demonstrated that the composition, structure, and assembly processes of rhizosphere bacteria and fungi exhibited significant differences among mulberry cultivars, and their response to soil chemical traits and leaf yield also varies. The correlations in the bacterial communities were more complex than in the fungal communities among the five cultivars. During the assembly process, bacteria were more stable than fungi. Penicillium and Phytophthora showed a positive correlation with leaf yield and were significantly enriched in the Canghai 12 rhizosphere soil, which exhibited the highest leaf production. Bacillus was a bacterium that showed a significant positive correlation with leaf yield. The saprotrophs exhibited the largest guild in terms of operational taxonomic unit richness. This research indicated that the mulberry genotype is one of the dominant factors in rhizosphere microorganism recruitment and assembly. These findings provide new insights into the complex microbial community soil-plant interaction and probiotic screening.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.