Kun Dai, Lingli Ding, Xiaomeng Yang, Suqing Wang, Zhihui Rong
{"title":"早产儿的肠道微生物群和神经发育:临床翻译的机制见解和前景。","authors":"Kun Dai, Lingli Ding, Xiaomeng Yang, Suqing Wang, Zhihui Rong","doi":"10.3390/microorganisms13092213","DOIUrl":null,"url":null,"abstract":"<p><p>Preterm birth remains a significant global health challenge and is strongly associated with heightened risks of long-term neurodevelopmental impairments, including cognitive delays, behavioural disorders, and emotional dysregulation. In recent years, accumulating evidence has underscored the critical role of the gut microbiota in early brain development through the gut-brain axis. In preterm infants, microbial colonisation is frequently delayed or disrupted due to caesarean delivery, perinatal antibiotic exposure, formula feeding, and prolonged stays in neonatal intensive care units (NICUs), all of which contribute to gut dysbiosis during critical periods of neurodevelopment. This review synthesises current knowledge on the sources, temporal patterns, and determinants of gut microbiota colonisation in preterm infants. This review focuses on the gut bacteriome and uses faecal-sample bacteriome sequencing as its primary method of characterisation. We detail five mechanistic pathways that link microbial disturbances to adverse neurodevelopmental outcomes: immune activation and white matter injury, short-chain fatty acids (SCFAs)-mediated neuroprotection, tryptophan-serotonin metabolic signalling, hypothalamic-pituitary-adrenal (HPA) axis modulation, and the integrity of intestinal and blood-brain barriers (BBB). We also critically examine emerging microbiota-targeted interventions-including probiotics, prebiotics, human milk oligosaccharides (HMOs), antibiotic stewardship strategies, skin-to-skin contact (SSC), and faecal microbiota transplantation (FMT)-focusing on their mechanisms of action, translational potential, and associated ethical concerns. Finally, we identify key research gaps, including the scarcity of longitudinal studies, limited functional modelling, and the absence of standardised protocols across clinical settings. A comprehensive understanding of microbial-neurodevelopmental interactions may provide a foundation for the development of targeted, timing-sensitive, and ethically sound interventions aimed at improving neurodevelopmental outcomes in this vulnerable population.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472338/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gut Microbiota and Neurodevelopment in Preterm Infants: Mechanistic Insights and Prospects for Clinical Translation.\",\"authors\":\"Kun Dai, Lingli Ding, Xiaomeng Yang, Suqing Wang, Zhihui Rong\",\"doi\":\"10.3390/microorganisms13092213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Preterm birth remains a significant global health challenge and is strongly associated with heightened risks of long-term neurodevelopmental impairments, including cognitive delays, behavioural disorders, and emotional dysregulation. In recent years, accumulating evidence has underscored the critical role of the gut microbiota in early brain development through the gut-brain axis. In preterm infants, microbial colonisation is frequently delayed or disrupted due to caesarean delivery, perinatal antibiotic exposure, formula feeding, and prolonged stays in neonatal intensive care units (NICUs), all of which contribute to gut dysbiosis during critical periods of neurodevelopment. This review synthesises current knowledge on the sources, temporal patterns, and determinants of gut microbiota colonisation in preterm infants. This review focuses on the gut bacteriome and uses faecal-sample bacteriome sequencing as its primary method of characterisation. We detail five mechanistic pathways that link microbial disturbances to adverse neurodevelopmental outcomes: immune activation and white matter injury, short-chain fatty acids (SCFAs)-mediated neuroprotection, tryptophan-serotonin metabolic signalling, hypothalamic-pituitary-adrenal (HPA) axis modulation, and the integrity of intestinal and blood-brain barriers (BBB). We also critically examine emerging microbiota-targeted interventions-including probiotics, prebiotics, human milk oligosaccharides (HMOs), antibiotic stewardship strategies, skin-to-skin contact (SSC), and faecal microbiota transplantation (FMT)-focusing on their mechanisms of action, translational potential, and associated ethical concerns. Finally, we identify key research gaps, including the scarcity of longitudinal studies, limited functional modelling, and the absence of standardised protocols across clinical settings. A comprehensive understanding of microbial-neurodevelopmental interactions may provide a foundation for the development of targeted, timing-sensitive, and ethically sound interventions aimed at improving neurodevelopmental outcomes in this vulnerable population.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472338/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms13092213\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13092213","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Gut Microbiota and Neurodevelopment in Preterm Infants: Mechanistic Insights and Prospects for Clinical Translation.
Preterm birth remains a significant global health challenge and is strongly associated with heightened risks of long-term neurodevelopmental impairments, including cognitive delays, behavioural disorders, and emotional dysregulation. In recent years, accumulating evidence has underscored the critical role of the gut microbiota in early brain development through the gut-brain axis. In preterm infants, microbial colonisation is frequently delayed or disrupted due to caesarean delivery, perinatal antibiotic exposure, formula feeding, and prolonged stays in neonatal intensive care units (NICUs), all of which contribute to gut dysbiosis during critical periods of neurodevelopment. This review synthesises current knowledge on the sources, temporal patterns, and determinants of gut microbiota colonisation in preterm infants. This review focuses on the gut bacteriome and uses faecal-sample bacteriome sequencing as its primary method of characterisation. We detail five mechanistic pathways that link microbial disturbances to adverse neurodevelopmental outcomes: immune activation and white matter injury, short-chain fatty acids (SCFAs)-mediated neuroprotection, tryptophan-serotonin metabolic signalling, hypothalamic-pituitary-adrenal (HPA) axis modulation, and the integrity of intestinal and blood-brain barriers (BBB). We also critically examine emerging microbiota-targeted interventions-including probiotics, prebiotics, human milk oligosaccharides (HMOs), antibiotic stewardship strategies, skin-to-skin contact (SSC), and faecal microbiota transplantation (FMT)-focusing on their mechanisms of action, translational potential, and associated ethical concerns. Finally, we identify key research gaps, including the scarcity of longitudinal studies, limited functional modelling, and the absence of standardised protocols across clinical settings. A comprehensive understanding of microbial-neurodevelopmental interactions may provide a foundation for the development of targeted, timing-sensitive, and ethically sound interventions aimed at improving neurodevelopmental outcomes in this vulnerable population.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.