True L Rogers, Andrew J Horton, Thomas Watson, Stephanie Robart, Brooklynn DeFrancesco, Hannah Bishop, Elizabeth Tocce
{"title":"含乳铁蛋白的口服片剂,一种具有凝聚力的生物大分子。","authors":"True L Rogers, Andrew J Horton, Thomas Watson, Stephanie Robart, Brooklynn DeFrancesco, Hannah Bishop, Elizabeth Tocce","doi":"10.3390/pharmaceutics17091151","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> The aim of our research was to understand how excipients, unit operations, and process parameters impact processability and resulting properties, performance, and stability of tablets containing bovine lactoferrin, a cohesive biomacromolecule. <b>Methods:</b> Microcrystalline cellulose (MCC), croscarmellose (xCMC), lactose (LAC), hydroxypropyl methylcellulose (HPMC), and sodium stearyl fumarate (SSF) were used to produce various tablet formulations containing lactoferrin across a concentration range of 5 to 45%, targeting immediate- or controlled release performance. Tablets were made either by direct compression or via dry granulation followed by tableting. In addition to release performance, tablet attributes were characterized for tensile strength, friability, weight uniformity, and content uniformity. <b>Results:</b> Acceptable tablet tensile strength, friability, and performance were obtained for lactoferrin concentrations ranging from 15 to 45%, using a variety of excipients and manufacturing approaches. In several cases, dry granulation improved content uniformity. Excipient choice and tablet compression force impacted drug release, particularly when MCC alone was used as dry binder for immediate release. Dry granulation impacted tablet tensile properties, but did not significantly impact release performance. Lactoferrin-excipient compatibility was demonstrated for up to 2 years in ambient laboratory conditions. <b>Conclusions:</b> The study demonstrates that robust tablets can be produced using excipients and processes amenable to scale-up for industrial production. Consistent, stable, and suitably performing tablets were successfully produced using a variety of excipients, processing approaches, and across a broad concentration range with this cohesive biomacromolecule active pharmaceutical ingredient (API). Both immediate- and controlled release performance modes were possible.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 9","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473581/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oral Tablet Formulations with Lactoferrin, a Cohesive Biomacromolecule.\",\"authors\":\"True L Rogers, Andrew J Horton, Thomas Watson, Stephanie Robart, Brooklynn DeFrancesco, Hannah Bishop, Elizabeth Tocce\",\"doi\":\"10.3390/pharmaceutics17091151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> The aim of our research was to understand how excipients, unit operations, and process parameters impact processability and resulting properties, performance, and stability of tablets containing bovine lactoferrin, a cohesive biomacromolecule. <b>Methods:</b> Microcrystalline cellulose (MCC), croscarmellose (xCMC), lactose (LAC), hydroxypropyl methylcellulose (HPMC), and sodium stearyl fumarate (SSF) were used to produce various tablet formulations containing lactoferrin across a concentration range of 5 to 45%, targeting immediate- or controlled release performance. Tablets were made either by direct compression or via dry granulation followed by tableting. In addition to release performance, tablet attributes were characterized for tensile strength, friability, weight uniformity, and content uniformity. <b>Results:</b> Acceptable tablet tensile strength, friability, and performance were obtained for lactoferrin concentrations ranging from 15 to 45%, using a variety of excipients and manufacturing approaches. In several cases, dry granulation improved content uniformity. Excipient choice and tablet compression force impacted drug release, particularly when MCC alone was used as dry binder for immediate release. Dry granulation impacted tablet tensile properties, but did not significantly impact release performance. Lactoferrin-excipient compatibility was demonstrated for up to 2 years in ambient laboratory conditions. <b>Conclusions:</b> The study demonstrates that robust tablets can be produced using excipients and processes amenable to scale-up for industrial production. Consistent, stable, and suitably performing tablets were successfully produced using a variety of excipients, processing approaches, and across a broad concentration range with this cohesive biomacromolecule active pharmaceutical ingredient (API). Both immediate- and controlled release performance modes were possible.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"17 9\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473581/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics17091151\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17091151","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Oral Tablet Formulations with Lactoferrin, a Cohesive Biomacromolecule.
Background/Objectives: The aim of our research was to understand how excipients, unit operations, and process parameters impact processability and resulting properties, performance, and stability of tablets containing bovine lactoferrin, a cohesive biomacromolecule. Methods: Microcrystalline cellulose (MCC), croscarmellose (xCMC), lactose (LAC), hydroxypropyl methylcellulose (HPMC), and sodium stearyl fumarate (SSF) were used to produce various tablet formulations containing lactoferrin across a concentration range of 5 to 45%, targeting immediate- or controlled release performance. Tablets were made either by direct compression or via dry granulation followed by tableting. In addition to release performance, tablet attributes were characterized for tensile strength, friability, weight uniformity, and content uniformity. Results: Acceptable tablet tensile strength, friability, and performance were obtained for lactoferrin concentrations ranging from 15 to 45%, using a variety of excipients and manufacturing approaches. In several cases, dry granulation improved content uniformity. Excipient choice and tablet compression force impacted drug release, particularly when MCC alone was used as dry binder for immediate release. Dry granulation impacted tablet tensile properties, but did not significantly impact release performance. Lactoferrin-excipient compatibility was demonstrated for up to 2 years in ambient laboratory conditions. Conclusions: The study demonstrates that robust tablets can be produced using excipients and processes amenable to scale-up for industrial production. Consistent, stable, and suitably performing tablets were successfully produced using a variety of excipients, processing approaches, and across a broad concentration range with this cohesive biomacromolecule active pharmaceutical ingredient (API). Both immediate- and controlled release performance modes were possible.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.