{"title":"MicroAIbiome:使用可解释的机器学习从微生物谱中解码癌症类型。","authors":"Md Motiur Rahman, Shiva Shokouhmand, Saeka Rahman, Nafisa Nawar Tamzi, Smriti Bhatt, Miad Faezipour","doi":"10.3390/microorganisms13092210","DOIUrl":null,"url":null,"abstract":"<p><p>Microbial communities within human tissues are increasingly recognized as promising biomarkers for cancer detection. However, leveraging microbiome data for multiclass cancer classification remains challenging due to its compositional structure, high dimensionality, and lack of model interpretability. In this study, we address these challenges by introducing MicroAIbiome, a machine learning-based artificial intelligence (AI) pipeline designed to classify five cancer types such as esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), stomach adenocarcinoma (STAD), colon adenocarcinoma (COAD), and rectum adenocarcinoma (READ), using genus-level microbial relative abundances. Our pipeline incorporates zero-replacement, centered log-ratio (CLR) transformation, correlation filtering, and recursive feature elimination (RFE) to enable robust learning from compositional data. Among five evaluated classifiers, XGBoost achieved the highest accuracy of 78.23%, outperforming prior work. We further enhance interpretability using SHapley Additive exPlanations (SHAP)-based feature attribution to uncover class-specific microbial signatures, such as Corynebacterium in ESCA and Bacteroides in COAD. Our results highlight the importance of compositional preprocessing and explainable AI in advancing microbiome-based cancer diagnostics.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"13 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473104/pdf/","citationCount":"0","resultStr":"{\"title\":\"MicroAIbiome: Decoding Cancer Types from Microbial Profiles Using Explainable Machine Learning.\",\"authors\":\"Md Motiur Rahman, Shiva Shokouhmand, Saeka Rahman, Nafisa Nawar Tamzi, Smriti Bhatt, Miad Faezipour\",\"doi\":\"10.3390/microorganisms13092210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbial communities within human tissues are increasingly recognized as promising biomarkers for cancer detection. However, leveraging microbiome data for multiclass cancer classification remains challenging due to its compositional structure, high dimensionality, and lack of model interpretability. In this study, we address these challenges by introducing MicroAIbiome, a machine learning-based artificial intelligence (AI) pipeline designed to classify five cancer types such as esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), stomach adenocarcinoma (STAD), colon adenocarcinoma (COAD), and rectum adenocarcinoma (READ), using genus-level microbial relative abundances. Our pipeline incorporates zero-replacement, centered log-ratio (CLR) transformation, correlation filtering, and recursive feature elimination (RFE) to enable robust learning from compositional data. Among five evaluated classifiers, XGBoost achieved the highest accuracy of 78.23%, outperforming prior work. We further enhance interpretability using SHapley Additive exPlanations (SHAP)-based feature attribution to uncover class-specific microbial signatures, such as Corynebacterium in ESCA and Bacteroides in COAD. Our results highlight the importance of compositional preprocessing and explainable AI in advancing microbiome-based cancer diagnostics.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":\"13 9\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12473104/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms13092210\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms13092210","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
MicroAIbiome: Decoding Cancer Types from Microbial Profiles Using Explainable Machine Learning.
Microbial communities within human tissues are increasingly recognized as promising biomarkers for cancer detection. However, leveraging microbiome data for multiclass cancer classification remains challenging due to its compositional structure, high dimensionality, and lack of model interpretability. In this study, we address these challenges by introducing MicroAIbiome, a machine learning-based artificial intelligence (AI) pipeline designed to classify five cancer types such as esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), stomach adenocarcinoma (STAD), colon adenocarcinoma (COAD), and rectum adenocarcinoma (READ), using genus-level microbial relative abundances. Our pipeline incorporates zero-replacement, centered log-ratio (CLR) transformation, correlation filtering, and recursive feature elimination (RFE) to enable robust learning from compositional data. Among five evaluated classifiers, XGBoost achieved the highest accuracy of 78.23%, outperforming prior work. We further enhance interpretability using SHapley Additive exPlanations (SHAP)-based feature attribution to uncover class-specific microbial signatures, such as Corynebacterium in ESCA and Bacteroides in COAD. Our results highlight the importance of compositional preprocessing and explainable AI in advancing microbiome-based cancer diagnostics.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.