Surya Karuturi, Kaitlyn L Jobe, Melinda E Varney, Michael D Hambuchen, A R M Ruhul Amin, Timothy E Long
{"title":"(二硫过氧化物)硫酸酯基抗烟曲霉抗三唑药物的优化。","authors":"Surya Karuturi, Kaitlyn L Jobe, Melinda E Varney, Michael D Hambuchen, A R M Ruhul Amin, Timothy E Long","doi":"10.3390/pathogens14090878","DOIUrl":null,"url":null,"abstract":"<p><p>This investigation on novel antifungal agents featuring a thiol-reactive (dithioperoxo)thiolate chemical nucleus [-NC(S)S-SR] established that the optimal levels of fungal growth inhibition were achieved with thiomethyl-bound derivatives (R = Me). The most efficacious analogs had MIC<sub>50</sub>/MIC<sub>90</sub> values of 2/2 µg/mL and an MIC range of 1 to 2 µg/mL for a ten-member panel of voriconazole-resistant <i>A. fumigatus</i> mutants. Pharmacodynamic studies revealed that the lead (dithioperoxo)thiolates impaired conidial germination and germling development more effectively than voriconazole for the triazole-resistant strain AR-1295. Moreover, glutathione and Cu<sup>2+</sup> were shown to have antagonistic interactions, which was attributed to the thiol-reactive, pro-oxidant properties of the (dithioperoxo)thiolates and their metabolic conversion to chelating agents. Cytotoxicity studies further showed that the compounds were less toxic to human fetal kidney cells than squamous carcinoma cells. The collective findings of the investigation indicate that (dithioperoxo)thiolates are effective antifungal agents against <i>A. fumigatus</i> to merit additional research on their therapeutic potential.</p>","PeriodicalId":19758,"journal":{"name":"Pathogens","volume":"14 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472219/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimization of (Dithioperoxo)thiolate-Based Antifungal Agents for Triazole-Resistant <i>Aspergillus Fumigatus</i>.\",\"authors\":\"Surya Karuturi, Kaitlyn L Jobe, Melinda E Varney, Michael D Hambuchen, A R M Ruhul Amin, Timothy E Long\",\"doi\":\"10.3390/pathogens14090878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This investigation on novel antifungal agents featuring a thiol-reactive (dithioperoxo)thiolate chemical nucleus [-NC(S)S-SR] established that the optimal levels of fungal growth inhibition were achieved with thiomethyl-bound derivatives (R = Me). The most efficacious analogs had MIC<sub>50</sub>/MIC<sub>90</sub> values of 2/2 µg/mL and an MIC range of 1 to 2 µg/mL for a ten-member panel of voriconazole-resistant <i>A. fumigatus</i> mutants. Pharmacodynamic studies revealed that the lead (dithioperoxo)thiolates impaired conidial germination and germling development more effectively than voriconazole for the triazole-resistant strain AR-1295. Moreover, glutathione and Cu<sup>2+</sup> were shown to have antagonistic interactions, which was attributed to the thiol-reactive, pro-oxidant properties of the (dithioperoxo)thiolates and their metabolic conversion to chelating agents. Cytotoxicity studies further showed that the compounds were less toxic to human fetal kidney cells than squamous carcinoma cells. The collective findings of the investigation indicate that (dithioperoxo)thiolates are effective antifungal agents against <i>A. fumigatus</i> to merit additional research on their therapeutic potential.</p>\",\"PeriodicalId\":19758,\"journal\":{\"name\":\"Pathogens\",\"volume\":\"14 9\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472219/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pathogens14090878\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pathogens14090878","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Optimization of (Dithioperoxo)thiolate-Based Antifungal Agents for Triazole-Resistant Aspergillus Fumigatus.
This investigation on novel antifungal agents featuring a thiol-reactive (dithioperoxo)thiolate chemical nucleus [-NC(S)S-SR] established that the optimal levels of fungal growth inhibition were achieved with thiomethyl-bound derivatives (R = Me). The most efficacious analogs had MIC50/MIC90 values of 2/2 µg/mL and an MIC range of 1 to 2 µg/mL for a ten-member panel of voriconazole-resistant A. fumigatus mutants. Pharmacodynamic studies revealed that the lead (dithioperoxo)thiolates impaired conidial germination and germling development more effectively than voriconazole for the triazole-resistant strain AR-1295. Moreover, glutathione and Cu2+ were shown to have antagonistic interactions, which was attributed to the thiol-reactive, pro-oxidant properties of the (dithioperoxo)thiolates and their metabolic conversion to chelating agents. Cytotoxicity studies further showed that the compounds were less toxic to human fetal kidney cells than squamous carcinoma cells. The collective findings of the investigation indicate that (dithioperoxo)thiolates are effective antifungal agents against A. fumigatus to merit additional research on their therapeutic potential.
期刊介绍:
Pathogens (ISSN 2076-0817) publishes reviews, regular research papers and short notes on all aspects of pathogens and pathogen-host interactions. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.