{"title":"研究使用生物可降解材料的增材技术(3D打印)生产的结构隔板的热性能。","authors":"Beata Anwajler, Arkadiusz Wieleżew, Krystian Grabowski, Tullio de Rubeis, Dario Ambrosini, Ewa Zdybel, Ewa Tomaszewska-Ciosk","doi":"10.3390/ma18184379","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in material technologies and increasingly stringent thermal insulation requirements are driving the search for innovative solutions to serve as an alternative to traditional insulating materials. Using 3D printing techniques to produce thermal insulation opens up new possibilities for creating structures, geometries, and shapes from a variety of raw materials, ranging from synthetic polymers to biodegradable composites. This study aimed to develop a modern thermal insulation barrier with a comparable thermal conductivity to conventional materials to enhance the energy efficiency of buildings. Cellular materials based on the Kelvin cell were fabricated using additive manufacturing via 3D SLS printing from a composite consisting of a biodegradable material (TPS) and a recyclable polymer (PA12). The printed cellular structural partitions were tested for their thermal insulation properties, including thermal conductivity coefficient, thermal transmittance (U-value), and thermal resistance. The best thermal insulation performance was demonstrated by a double-layer partition made from TPS + PA12 at a mass ratio of 5:5 and with a thickness of 60 mm. This sample achieved a thermal conductivity of λ = 0.026 W/(m·K), a thermal resistance of R = 2.4 (m<sup>2</sup>·K)/W, and a thermal transmittance of U = 0.42 W/(m<sup>2</sup>·K). Cellular partition variants with the most favorable properties were incorporated into building thermal balance software and an energy simulation was conducted for a single-family house using prototype insulating materials. This enabled an assessment of their energy efficiency and cost-effectiveness.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 18","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472162/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigating the Thermal Properties of Structural Partitions Produced Using Additive Technology (3D Printing) from Biodegradable Materials for Use in Construction.\",\"authors\":\"Beata Anwajler, Arkadiusz Wieleżew, Krystian Grabowski, Tullio de Rubeis, Dario Ambrosini, Ewa Zdybel, Ewa Tomaszewska-Ciosk\",\"doi\":\"10.3390/ma18184379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Advancements in material technologies and increasingly stringent thermal insulation requirements are driving the search for innovative solutions to serve as an alternative to traditional insulating materials. Using 3D printing techniques to produce thermal insulation opens up new possibilities for creating structures, geometries, and shapes from a variety of raw materials, ranging from synthetic polymers to biodegradable composites. This study aimed to develop a modern thermal insulation barrier with a comparable thermal conductivity to conventional materials to enhance the energy efficiency of buildings. Cellular materials based on the Kelvin cell were fabricated using additive manufacturing via 3D SLS printing from a composite consisting of a biodegradable material (TPS) and a recyclable polymer (PA12). The printed cellular structural partitions were tested for their thermal insulation properties, including thermal conductivity coefficient, thermal transmittance (U-value), and thermal resistance. The best thermal insulation performance was demonstrated by a double-layer partition made from TPS + PA12 at a mass ratio of 5:5 and with a thickness of 60 mm. This sample achieved a thermal conductivity of λ = 0.026 W/(m·K), a thermal resistance of R = 2.4 (m<sup>2</sup>·K)/W, and a thermal transmittance of U = 0.42 W/(m<sup>2</sup>·K). Cellular partition variants with the most favorable properties were incorporated into building thermal balance software and an energy simulation was conducted for a single-family house using prototype insulating materials. This enabled an assessment of their energy efficiency and cost-effectiveness.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 18\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472162/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18184379\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18184379","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Investigating the Thermal Properties of Structural Partitions Produced Using Additive Technology (3D Printing) from Biodegradable Materials for Use in Construction.
Advancements in material technologies and increasingly stringent thermal insulation requirements are driving the search for innovative solutions to serve as an alternative to traditional insulating materials. Using 3D printing techniques to produce thermal insulation opens up new possibilities for creating structures, geometries, and shapes from a variety of raw materials, ranging from synthetic polymers to biodegradable composites. This study aimed to develop a modern thermal insulation barrier with a comparable thermal conductivity to conventional materials to enhance the energy efficiency of buildings. Cellular materials based on the Kelvin cell were fabricated using additive manufacturing via 3D SLS printing from a composite consisting of a biodegradable material (TPS) and a recyclable polymer (PA12). The printed cellular structural partitions were tested for their thermal insulation properties, including thermal conductivity coefficient, thermal transmittance (U-value), and thermal resistance. The best thermal insulation performance was demonstrated by a double-layer partition made from TPS + PA12 at a mass ratio of 5:5 and with a thickness of 60 mm. This sample achieved a thermal conductivity of λ = 0.026 W/(m·K), a thermal resistance of R = 2.4 (m2·K)/W, and a thermal transmittance of U = 0.42 W/(m2·K). Cellular partition variants with the most favorable properties were incorporated into building thermal balance software and an energy simulation was conducted for a single-family house using prototype insulating materials. This enabled an assessment of their energy efficiency and cost-effectiveness.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.