下一代AR/VR近眼显示光学工程的元光学。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-09-07 DOI:10.3390/mi16091026
Junoh Lee, Sun-Je Kim
{"title":"下一代AR/VR近眼显示光学工程的元光学。","authors":"Junoh Lee, Sun-Je Kim","doi":"10.3390/mi16091026","DOIUrl":null,"url":null,"abstract":"<p><p>Meta-optics, enabled by metasurfaces consisting of two-dimensional arrays of meta-atoms, offers ultrathin and multi-functional control over the vectorial wavefront of light at subwavelength scales. The unprecedented optical element technology is a promising candidate to overcome key limitations in augmented reality (AR) and virtual reality (VR) near-eye displays particularly in achieving compact, eyeglass-type form factors with a wide field-of-view, a large eyebox, high resolution, high brightness, and reduced optical aberrations, at the same time. This review highlights key performance bottlenecks of AR/VR displays in the perspective of optical design, with an emphasis on their practical significance for advancing current technologies. We then examine how meta-optical elements are applied to VR and AR systems by introducing and analyzing the major milestone studies. In case of AR systems, particularly, two different categories, free-space and waveguide-based architectures, are introduced. For each category, we summarize studies using metasurfaces as lenses, combiners, or waveguide couplers. While meta-optics enables unprecedented miniaturization and functionality, it also faces several remaining challenges. The authors suggest potential technological directions to address such issues. By surveying recent progress and design strategies, this review provides a comprehensive perspective on the role of meta-optics in advancing the optical engineering of next-generation AR/VR near-eye displays.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471599/pdf/","citationCount":"0","resultStr":"{\"title\":\"Meta-Optics for Optical Engineering of Next-Generation AR/VR Near-Eye Displays.\",\"authors\":\"Junoh Lee, Sun-Je Kim\",\"doi\":\"10.3390/mi16091026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Meta-optics, enabled by metasurfaces consisting of two-dimensional arrays of meta-atoms, offers ultrathin and multi-functional control over the vectorial wavefront of light at subwavelength scales. The unprecedented optical element technology is a promising candidate to overcome key limitations in augmented reality (AR) and virtual reality (VR) near-eye displays particularly in achieving compact, eyeglass-type form factors with a wide field-of-view, a large eyebox, high resolution, high brightness, and reduced optical aberrations, at the same time. This review highlights key performance bottlenecks of AR/VR displays in the perspective of optical design, with an emphasis on their practical significance for advancing current technologies. We then examine how meta-optical elements are applied to VR and AR systems by introducing and analyzing the major milestone studies. In case of AR systems, particularly, two different categories, free-space and waveguide-based architectures, are introduced. For each category, we summarize studies using metasurfaces as lenses, combiners, or waveguide couplers. While meta-optics enables unprecedented miniaturization and functionality, it also faces several remaining challenges. The authors suggest potential technological directions to address such issues. By surveying recent progress and design strategies, this review provides a comprehensive perspective on the role of meta-optics in advancing the optical engineering of next-generation AR/VR near-eye displays.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471599/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16091026\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091026","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

元光学是由元原子的二维阵列组成的超表面实现的,它可以在亚波长尺度上对光的矢量波前进行超薄和多功能控制。这种前所未有的光学元件技术有望克服增强现实(AR)和虚拟现实(VR)近眼显示的关键限制,特别是在实现具有宽视场、大眼箱、高分辨率、高亮度和低光学像差的紧凑眼镜型外形因素方面。本文从光学设计的角度分析了AR/VR显示器的主要性能瓶颈,并强调了它们对推进当前技术的实际意义。然后,我们通过介绍和分析主要的里程碑研究来研究元光学元件如何应用于VR和AR系统。特别是在AR系统中,介绍了两种不同的类别,即自由空间和基于波导的架构。对于每个类别,我们总结了使用超表面作为透镜,合并器或波导耦合器的研究。虽然元光学技术实现了前所未有的小型化和功能化,但它仍然面临着一些挑战。作者提出了解决这些问题的潜在技术方向。本文综述了元光学在推进下一代AR/VR近眼显示器光学工程中的作用,综述了元光学的研究进展和设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meta-Optics for Optical Engineering of Next-Generation AR/VR Near-Eye Displays.

Meta-optics, enabled by metasurfaces consisting of two-dimensional arrays of meta-atoms, offers ultrathin and multi-functional control over the vectorial wavefront of light at subwavelength scales. The unprecedented optical element technology is a promising candidate to overcome key limitations in augmented reality (AR) and virtual reality (VR) near-eye displays particularly in achieving compact, eyeglass-type form factors with a wide field-of-view, a large eyebox, high resolution, high brightness, and reduced optical aberrations, at the same time. This review highlights key performance bottlenecks of AR/VR displays in the perspective of optical design, with an emphasis on their practical significance for advancing current technologies. We then examine how meta-optical elements are applied to VR and AR systems by introducing and analyzing the major milestone studies. In case of AR systems, particularly, two different categories, free-space and waveguide-based architectures, are introduced. For each category, we summarize studies using metasurfaces as lenses, combiners, or waveguide couplers. While meta-optics enables unprecedented miniaturization and functionality, it also faces several remaining challenges. The authors suggest potential technological directions to address such issues. By surveying recent progress and design strategies, this review provides a comprehensive perspective on the role of meta-optics in advancing the optical engineering of next-generation AR/VR near-eye displays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信