Bin Hu, Junhua Wang, Junfei Xu, Qingyang Wang, Li Zhang
{"title":"宽光束激光直接能量沉积铁基合金层几何精度和力学性能的提高。","authors":"Bin Hu, Junhua Wang, Junfei Xu, Qingyang Wang, Li Zhang","doi":"10.3390/ma18184350","DOIUrl":null,"url":null,"abstract":"<p><p>Laser direct energy deposition (LDED) has been widely employed in surface modification and remanufacturing. Achieving high-precision geometries and superior mechanical properties in cladding layers remains a persistent research focus. In this study, an Fe-based alloy was deposited on an AISI 1045 substrate via a wide-beam laser cladding system. Single-track multi-layer samples were prepared with varying z-increment (Z<sub>d</sub>), interlayer dwell time (T<sub>I</sub>) and laser scanning speed (V) values. The geometry, microstructure, microhardness and wear resistance of the samples were analyzed. Experimental results showed that an estimated Z<sub>d</sub> can ensure a constant standoff distance of the laser head and resulting geometric accuracy improvement. Planar grains form at the layer-substrate bonding interface and transition to columnar grains adjacently, while dendrites and equiaxed grains are distributed in the middle and top regions of the layer. The coating layer exhibits much better wear resistance and friction properties than the substrate. The cooling rate can be substantially increased by either raising V or prolonging T<sub>I</sub>, resulting in refined grain structures and enhanced microhardness. Real-time monitoring and controlling the mean cooling rate have been demonstrated to be effective strategies for enhancing cladding layer performance.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 18","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471669/pdf/","citationCount":"0","resultStr":"{\"title\":\"Geometric Accuracy and Mechanical Property Enhancement of Fe-Based Alloy Layers in Wide-Beam Laser Direct Energy Deposition.\",\"authors\":\"Bin Hu, Junhua Wang, Junfei Xu, Qingyang Wang, Li Zhang\",\"doi\":\"10.3390/ma18184350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Laser direct energy deposition (LDED) has been widely employed in surface modification and remanufacturing. Achieving high-precision geometries and superior mechanical properties in cladding layers remains a persistent research focus. In this study, an Fe-based alloy was deposited on an AISI 1045 substrate via a wide-beam laser cladding system. Single-track multi-layer samples were prepared with varying z-increment (Z<sub>d</sub>), interlayer dwell time (T<sub>I</sub>) and laser scanning speed (V) values. The geometry, microstructure, microhardness and wear resistance of the samples were analyzed. Experimental results showed that an estimated Z<sub>d</sub> can ensure a constant standoff distance of the laser head and resulting geometric accuracy improvement. Planar grains form at the layer-substrate bonding interface and transition to columnar grains adjacently, while dendrites and equiaxed grains are distributed in the middle and top regions of the layer. The coating layer exhibits much better wear resistance and friction properties than the substrate. The cooling rate can be substantially increased by either raising V or prolonging T<sub>I</sub>, resulting in refined grain structures and enhanced microhardness. Real-time monitoring and controlling the mean cooling rate have been demonstrated to be effective strategies for enhancing cladding layer performance.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 18\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471669/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18184350\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18184350","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Geometric Accuracy and Mechanical Property Enhancement of Fe-Based Alloy Layers in Wide-Beam Laser Direct Energy Deposition.
Laser direct energy deposition (LDED) has been widely employed in surface modification and remanufacturing. Achieving high-precision geometries and superior mechanical properties in cladding layers remains a persistent research focus. In this study, an Fe-based alloy was deposited on an AISI 1045 substrate via a wide-beam laser cladding system. Single-track multi-layer samples were prepared with varying z-increment (Zd), interlayer dwell time (TI) and laser scanning speed (V) values. The geometry, microstructure, microhardness and wear resistance of the samples were analyzed. Experimental results showed that an estimated Zd can ensure a constant standoff distance of the laser head and resulting geometric accuracy improvement. Planar grains form at the layer-substrate bonding interface and transition to columnar grains adjacently, while dendrites and equiaxed grains are distributed in the middle and top regions of the layer. The coating layer exhibits much better wear resistance and friction properties than the substrate. The cooling rate can be substantially increased by either raising V or prolonging TI, resulting in refined grain structures and enhanced microhardness. Real-time monitoring and controlling the mean cooling rate have been demonstrated to be effective strategies for enhancing cladding layer performance.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.