Wei Li, Peiqi Jiao, Dawei Luo, Qiang Xin, Bin Fan, Xiang Wu, Bo Gao, Qiang Chen
{"title":"混合电感耦合等离子体和计算机控制光学表面抛光快速制造无损伤超光滑表面。","authors":"Wei Li, Peiqi Jiao, Dawei Luo, Qiang Xin, Bin Fan, Xiang Wu, Bo Gao, Qiang Chen","doi":"10.3390/mi16091073","DOIUrl":null,"url":null,"abstract":"<p><p>The polymer deposition layer (PDL) formed during inductively coupled plasma (ICP) processing significantly limits the figuring accuracy and surface quality of fused silica optics. This study investigates the formation mechanism, composition, and evolution of the PDL under varying dwell times and proposes an innovative dwell time gradient strategy to suppress roughness deterioration. A significant disparity in hardness and elastic modulus between the deposition layer and the substrate is revealed, explaining its preferential removal and protective buffering effect in computer-controlled optical surfacing (CCOS). A hybrid ICP-CCOS polishing process was developed for processing a ϕ100 mm fused silica mirror. The results show that within 33 min, the surface graphic error RMS was significantly reduced from 58.006 nm to 12.111 nm, and within 90 min, the surface roughness was ultra-precisely reduced from Ra 1.719 nm to Ra 0.151 nm. The average processing efficiency was approximately 0.63 cm<sup>2</sup>/min. Critically, a damage-free, ultra-smooth surface without subsurface damage (SSD) was successfully achieved. This hybrid process enables the simultaneous optimization of figure accuracy and roughness, eliminating the need for iterative figuring cycles. It provides a novel theoretical framework for high-precision figuring and post-ICP polymer removal, advancing the efficient fabrication of high-performance optics.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471840/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hybrid Inductively Coupled Plasma and Computer-Controlled Optical Surfacing Polishing for Rapid Fabrication of Damage-Free Ultra-Smooth Surfaces.\",\"authors\":\"Wei Li, Peiqi Jiao, Dawei Luo, Qiang Xin, Bin Fan, Xiang Wu, Bo Gao, Qiang Chen\",\"doi\":\"10.3390/mi16091073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The polymer deposition layer (PDL) formed during inductively coupled plasma (ICP) processing significantly limits the figuring accuracy and surface quality of fused silica optics. This study investigates the formation mechanism, composition, and evolution of the PDL under varying dwell times and proposes an innovative dwell time gradient strategy to suppress roughness deterioration. A significant disparity in hardness and elastic modulus between the deposition layer and the substrate is revealed, explaining its preferential removal and protective buffering effect in computer-controlled optical surfacing (CCOS). A hybrid ICP-CCOS polishing process was developed for processing a ϕ100 mm fused silica mirror. The results show that within 33 min, the surface graphic error RMS was significantly reduced from 58.006 nm to 12.111 nm, and within 90 min, the surface roughness was ultra-precisely reduced from Ra 1.719 nm to Ra 0.151 nm. The average processing efficiency was approximately 0.63 cm<sup>2</sup>/min. Critically, a damage-free, ultra-smooth surface without subsurface damage (SSD) was successfully achieved. This hybrid process enables the simultaneous optimization of figure accuracy and roughness, eliminating the need for iterative figuring cycles. It provides a novel theoretical framework for high-precision figuring and post-ICP polymer removal, advancing the efficient fabrication of high-performance optics.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471840/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16091073\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091073","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Hybrid Inductively Coupled Plasma and Computer-Controlled Optical Surfacing Polishing for Rapid Fabrication of Damage-Free Ultra-Smooth Surfaces.
The polymer deposition layer (PDL) formed during inductively coupled plasma (ICP) processing significantly limits the figuring accuracy and surface quality of fused silica optics. This study investigates the formation mechanism, composition, and evolution of the PDL under varying dwell times and proposes an innovative dwell time gradient strategy to suppress roughness deterioration. A significant disparity in hardness and elastic modulus between the deposition layer and the substrate is revealed, explaining its preferential removal and protective buffering effect in computer-controlled optical surfacing (CCOS). A hybrid ICP-CCOS polishing process was developed for processing a ϕ100 mm fused silica mirror. The results show that within 33 min, the surface graphic error RMS was significantly reduced from 58.006 nm to 12.111 nm, and within 90 min, the surface roughness was ultra-precisely reduced from Ra 1.719 nm to Ra 0.151 nm. The average processing efficiency was approximately 0.63 cm2/min. Critically, a damage-free, ultra-smooth surface without subsurface damage (SSD) was successfully achieved. This hybrid process enables the simultaneous optimization of figure accuracy and roughness, eliminating the need for iterative figuring cycles. It provides a novel theoretical framework for high-precision figuring and post-ICP polymer removal, advancing the efficient fabrication of high-performance optics.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.