{"title":"非接触式压电作动器微位移放大机构等效刚度研究。","authors":"Huaiyong Li, Dongya Zhang, Yusheng Lin, Yue Yang, Zhiwei Shi, Chong Li","doi":"10.3390/mi16090974","DOIUrl":null,"url":null,"abstract":"<p><p>To address the issues of mechanical wear and limited service life in conventional contact piezoelectric actuators, this study proposes a non-contact piezoelectric actuator employing compressed air for energy transmission; we elucidate its structure and operating principle. The working performance of the actuator is significantly affected by the amplification performance of its micro-displacement amplification mechanism, which itself is closely dependent on the mechanism's stiffness. Mathematical models for both the filleted straight-beam flexure hinge and the micro-displacement amplification mechanism are established. Analytical equations for calculating the equivalent stiffness of the hinge and the mechanism are derived. The variations in the hinge's bending stiffness and tensile stiffness, as well as the mechanism's equivalent stiffness with key structural parameters, are investigated. The stress distribution of the micro-displacement amplification mechanism is analyzed to evaluate the rationality and reliability of its structural design. A prototype is fabricated and equivalent stiffness tests are conducted. The theoretical calculation is basically consistent with the experimental results, verifying the accuracy of the stiffness model. The results show that flexure hinge tensile stiffness significantly exceeds the bending stiffness, permitting the simplification of the hinge stiffness model. Hinge minimum thickness and beam length critically affect mechanism stiffness; reducing thickness or increasing beam length lowers stiffness, boosting displacement amplification.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471884/pdf/","citationCount":"0","resultStr":"{\"title\":\"Study of the Equivalent Stiffness of a Non-Contact Piezoelectric Actuator's Micro-Displacement Amplification Mechanism.\",\"authors\":\"Huaiyong Li, Dongya Zhang, Yusheng Lin, Yue Yang, Zhiwei Shi, Chong Li\",\"doi\":\"10.3390/mi16090974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the issues of mechanical wear and limited service life in conventional contact piezoelectric actuators, this study proposes a non-contact piezoelectric actuator employing compressed air for energy transmission; we elucidate its structure and operating principle. The working performance of the actuator is significantly affected by the amplification performance of its micro-displacement amplification mechanism, which itself is closely dependent on the mechanism's stiffness. Mathematical models for both the filleted straight-beam flexure hinge and the micro-displacement amplification mechanism are established. Analytical equations for calculating the equivalent stiffness of the hinge and the mechanism are derived. The variations in the hinge's bending stiffness and tensile stiffness, as well as the mechanism's equivalent stiffness with key structural parameters, are investigated. The stress distribution of the micro-displacement amplification mechanism is analyzed to evaluate the rationality and reliability of its structural design. A prototype is fabricated and equivalent stiffness tests are conducted. The theoretical calculation is basically consistent with the experimental results, verifying the accuracy of the stiffness model. The results show that flexure hinge tensile stiffness significantly exceeds the bending stiffness, permitting the simplification of the hinge stiffness model. Hinge minimum thickness and beam length critically affect mechanism stiffness; reducing thickness or increasing beam length lowers stiffness, boosting displacement amplification.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471884/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16090974\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16090974","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Study of the Equivalent Stiffness of a Non-Contact Piezoelectric Actuator's Micro-Displacement Amplification Mechanism.
To address the issues of mechanical wear and limited service life in conventional contact piezoelectric actuators, this study proposes a non-contact piezoelectric actuator employing compressed air for energy transmission; we elucidate its structure and operating principle. The working performance of the actuator is significantly affected by the amplification performance of its micro-displacement amplification mechanism, which itself is closely dependent on the mechanism's stiffness. Mathematical models for both the filleted straight-beam flexure hinge and the micro-displacement amplification mechanism are established. Analytical equations for calculating the equivalent stiffness of the hinge and the mechanism are derived. The variations in the hinge's bending stiffness and tensile stiffness, as well as the mechanism's equivalent stiffness with key structural parameters, are investigated. The stress distribution of the micro-displacement amplification mechanism is analyzed to evaluate the rationality and reliability of its structural design. A prototype is fabricated and equivalent stiffness tests are conducted. The theoretical calculation is basically consistent with the experimental results, verifying the accuracy of the stiffness model. The results show that flexure hinge tensile stiffness significantly exceeds the bending stiffness, permitting the simplification of the hinge stiffness model. Hinge minimum thickness and beam length critically affect mechanism stiffness; reducing thickness or increasing beam length lowers stiffness, boosting displacement amplification.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.