单晶硅纳米磨削特性及亚表面损伤形成机制研究。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-08-25 DOI:10.3390/mi16090976
Haipeng Yan, Haining Zhang, Siyuan Cao, Chao Wang
{"title":"单晶硅纳米磨削特性及亚表面损伤形成机制研究。","authors":"Haipeng Yan, Haining Zhang, Siyuan Cao, Chao Wang","doi":"10.3390/mi16090976","DOIUrl":null,"url":null,"abstract":"<p><p>Monocrystalline silicon is an excellent semiconductor material for integrated circuits. Its surface quality has an enormous effect on its service life. The surfaces are formed by ultra-precision machining using nano-grinding, one of the technologies that can achieve surface roughness at the nano- or sub-nano-scale. Therefore, subsurface damage of monocrystalline silicon in nano-grinding was studied by establishing a molecular dynamics simulation model, and the impact of machining parameters on the force-thermal behavior was analyzed. The results reveal that the mechanism of subsurface damage is mainly structural phase transformation and amorphization. In nano-grinding of monocrystalline silicon, the tangential grinding force has a relatively major role in material removal. With increasing grinding depth and grinding speed, the grinding heat rises, and a certain degree of high temperature strengthens the toughness of the material, improving the subsurface quality of monocrystalline silicon. Therefore, subsurface damage in monocrystalline silicon can be controlled by reducing the grinding depth and increasing the grinding speed.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471329/pdf/","citationCount":"0","resultStr":"{\"title\":\"Study on Nano-Grinding Characteristics and Formation Mechanism of Subsurface Damage in Monocrystalline Silicon.\",\"authors\":\"Haipeng Yan, Haining Zhang, Siyuan Cao, Chao Wang\",\"doi\":\"10.3390/mi16090976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Monocrystalline silicon is an excellent semiconductor material for integrated circuits. Its surface quality has an enormous effect on its service life. The surfaces are formed by ultra-precision machining using nano-grinding, one of the technologies that can achieve surface roughness at the nano- or sub-nano-scale. Therefore, subsurface damage of monocrystalline silicon in nano-grinding was studied by establishing a molecular dynamics simulation model, and the impact of machining parameters on the force-thermal behavior was analyzed. The results reveal that the mechanism of subsurface damage is mainly structural phase transformation and amorphization. In nano-grinding of monocrystalline silicon, the tangential grinding force has a relatively major role in material removal. With increasing grinding depth and grinding speed, the grinding heat rises, and a certain degree of high temperature strengthens the toughness of the material, improving the subsurface quality of monocrystalline silicon. Therefore, subsurface damage in monocrystalline silicon can be controlled by reducing the grinding depth and increasing the grinding speed.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471329/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16090976\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16090976","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

单晶硅是一种优良的集成电路半导体材料。其表面质量对其使用寿命有很大影响。这些表面是通过纳米磨削的超精密加工形成的,纳米磨削是一种可以实现纳米或亚纳米级表面粗糙度的技术。为此,通过建立分子动力学仿真模型,对单晶硅纳米磨削过程中的亚表面损伤进行了研究,分析了加工参数对力热行为的影响。结果表明,亚表面损伤的机制主要是组织相变和非晶化。在单晶硅纳米磨削中,切向磨削力对材料的去除起着比较大的作用。随着磨削深度和磨削速度的增加,磨削热升高,一定程度的高温增强了材料的韧性,改善了单晶硅的亚表面质量。因此,可以通过减小磨削深度和提高磨削速度来控制单晶硅的亚表面损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Nano-Grinding Characteristics and Formation Mechanism of Subsurface Damage in Monocrystalline Silicon.

Monocrystalline silicon is an excellent semiconductor material for integrated circuits. Its surface quality has an enormous effect on its service life. The surfaces are formed by ultra-precision machining using nano-grinding, one of the technologies that can achieve surface roughness at the nano- or sub-nano-scale. Therefore, subsurface damage of monocrystalline silicon in nano-grinding was studied by establishing a molecular dynamics simulation model, and the impact of machining parameters on the force-thermal behavior was analyzed. The results reveal that the mechanism of subsurface damage is mainly structural phase transformation and amorphization. In nano-grinding of monocrystalline silicon, the tangential grinding force has a relatively major role in material removal. With increasing grinding depth and grinding speed, the grinding heat rises, and a certain degree of high temperature strengthens the toughness of the material, improving the subsurface quality of monocrystalline silicon. Therefore, subsurface damage in monocrystalline silicon can be controlled by reducing the grinding depth and increasing the grinding speed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信