Jianping He, Tongchun Qin, Zhe Zhang, Ronggui Liu, Yuping Bao
{"title":"基于振动-应变融合分析的跨矿区管道安全监测方法。","authors":"Jianping He, Tongchun Qin, Zhe Zhang, Ronggui Liu, Yuping Bao","doi":"10.3390/mi16091074","DOIUrl":null,"url":null,"abstract":"<p><p>The overlying rock layers in a mining area may collapse or settle, subjecting pipelines to uneven forces that can lead to deformation or even fracture. This paper proposes a pipeline safety monitoring method that combines fiberoptic vibration and strain sensing to detect vibrations and deformations caused by rock layer collapse in mining zones. First, pipeline deformation monitoring under unknown force directions was investigated using fiber Bragg grating (FBG) sensing technology. Second, we constructed a mining area pipeline model and conducted vibration/deformation monitoring tests employing FBG sensors, distributed Brillouin strain sensing, and distributed fiberoptic vibration sensing technologies. The experimental results demonstrate that FBG sensor arrays deployed at 90-degree intervals can effectively identify the pipeline's primary force direction and maximum strain, with direction angle errors of less than 5.2%. The integrated analysis of vibration and strain data enables accurate identification and measurement of extended vibration responses and pipeline deformations in open-air zones. This study establishes a comprehensive monitoring framework for ensuring pipeline safety in mining areas.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472133/pdf/","citationCount":"0","resultStr":"{\"title\":\"Safety Monitoring Method for Pipeline Crossing the Mining Area Based on Vibration-Strain Fusion Analysis.\",\"authors\":\"Jianping He, Tongchun Qin, Zhe Zhang, Ronggui Liu, Yuping Bao\",\"doi\":\"10.3390/mi16091074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The overlying rock layers in a mining area may collapse or settle, subjecting pipelines to uneven forces that can lead to deformation or even fracture. This paper proposes a pipeline safety monitoring method that combines fiberoptic vibration and strain sensing to detect vibrations and deformations caused by rock layer collapse in mining zones. First, pipeline deformation monitoring under unknown force directions was investigated using fiber Bragg grating (FBG) sensing technology. Second, we constructed a mining area pipeline model and conducted vibration/deformation monitoring tests employing FBG sensors, distributed Brillouin strain sensing, and distributed fiberoptic vibration sensing technologies. The experimental results demonstrate that FBG sensor arrays deployed at 90-degree intervals can effectively identify the pipeline's primary force direction and maximum strain, with direction angle errors of less than 5.2%. The integrated analysis of vibration and strain data enables accurate identification and measurement of extended vibration responses and pipeline deformations in open-air zones. This study establishes a comprehensive monitoring framework for ensuring pipeline safety in mining areas.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12472133/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16091074\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091074","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Safety Monitoring Method for Pipeline Crossing the Mining Area Based on Vibration-Strain Fusion Analysis.
The overlying rock layers in a mining area may collapse or settle, subjecting pipelines to uneven forces that can lead to deformation or even fracture. This paper proposes a pipeline safety monitoring method that combines fiberoptic vibration and strain sensing to detect vibrations and deformations caused by rock layer collapse in mining zones. First, pipeline deformation monitoring under unknown force directions was investigated using fiber Bragg grating (FBG) sensing technology. Second, we constructed a mining area pipeline model and conducted vibration/deformation monitoring tests employing FBG sensors, distributed Brillouin strain sensing, and distributed fiberoptic vibration sensing technologies. The experimental results demonstrate that FBG sensor arrays deployed at 90-degree intervals can effectively identify the pipeline's primary force direction and maximum strain, with direction angle errors of less than 5.2%. The integrated analysis of vibration and strain data enables accurate identification and measurement of extended vibration responses and pipeline deformations in open-air zones. This study establishes a comprehensive monitoring framework for ensuring pipeline safety in mining areas.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.