具有抗弯曲波导和局部软微电极的刚柔神经光电极用于多功能生物相容性神经调节。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-08-27 DOI:10.3390/mi16090983
Minghao Wang, Chaojie Zhou, Siyan Shang, Hao Jiang, Wenhao Wang, Xinhua Zhou, Wenbin Zhang, Xinyi Wang, Minyi Jin, Tiling Hu, Longchun Wang, Bowen Ji
{"title":"具有抗弯曲波导和局部软微电极的刚柔神经光电极用于多功能生物相容性神经调节。","authors":"Minghao Wang, Chaojie Zhou, Siyan Shang, Hao Jiang, Wenhao Wang, Xinhua Zhou, Wenbin Zhang, Xinyi Wang, Minyi Jin, Tiling Hu, Longchun Wang, Bowen Ji","doi":"10.3390/mi16090983","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes a rigid-flexible neural optrode integrated with anti-bending SU-8 optical waveguides and locally soft peptide-functionalized microelectrodes to address the challenges of precise implantation and long-term biocompatibility in traditional neural interfaces. Fabricated via microelectromechanical systems (MEMS) technology, the optrode features a PBK/PPS/(PHE)<sub>2</sub> trilayer electrochemical modification that suppresses photoelectrochemical (PEC) noise by 63% and enhances charge storage capacity by 51 times. A polyethylene glycol (PEG)-enabled temporary rigid layer ensures precise implantation while allowing post-implantation restoration of flexibility and enabling positioning adjustment. In vitro tests demonstrate efficient light transmission through SU-8 waveguides in agar gel and a 63% reduction in PEC noise peaks. Biocompatibility analysis reveals that peptide-coated PI substrates improve cell viability by 32.5-37.1% compared to rigid silicon controls. In vivo validation in crucian carp midbrain successfully records local field potential (LFP) signals (60-80 μV), thereby confirming the optrode's sensitivity and stability. This design provides a low-damage and high-resolution tool for neural circuit analysis. It also lays a technical foundation for future applications in monitoring neuronal activity and researching neurodegenerative diseases with high spatiotemporal resolution.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471448/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rigid-Flexible Neural Optrode with Anti-Bending Waveguides and Locally Soft Microelectrodes for Multifunctional Biocompatible Neural Regulation.\",\"authors\":\"Minghao Wang, Chaojie Zhou, Siyan Shang, Hao Jiang, Wenhao Wang, Xinhua Zhou, Wenbin Zhang, Xinyi Wang, Minyi Jin, Tiling Hu, Longchun Wang, Bowen Ji\",\"doi\":\"10.3390/mi16090983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study proposes a rigid-flexible neural optrode integrated with anti-bending SU-8 optical waveguides and locally soft peptide-functionalized microelectrodes to address the challenges of precise implantation and long-term biocompatibility in traditional neural interfaces. Fabricated via microelectromechanical systems (MEMS) technology, the optrode features a PBK/PPS/(PHE)<sub>2</sub> trilayer electrochemical modification that suppresses photoelectrochemical (PEC) noise by 63% and enhances charge storage capacity by 51 times. A polyethylene glycol (PEG)-enabled temporary rigid layer ensures precise implantation while allowing post-implantation restoration of flexibility and enabling positioning adjustment. In vitro tests demonstrate efficient light transmission through SU-8 waveguides in agar gel and a 63% reduction in PEC noise peaks. Biocompatibility analysis reveals that peptide-coated PI substrates improve cell viability by 32.5-37.1% compared to rigid silicon controls. In vivo validation in crucian carp midbrain successfully records local field potential (LFP) signals (60-80 μV), thereby confirming the optrode's sensitivity and stability. This design provides a low-damage and high-resolution tool for neural circuit analysis. It also lays a technical foundation for future applications in monitoring neuronal activity and researching neurodegenerative diseases with high spatiotemporal resolution.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471448/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16090983\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16090983","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种结合抗弯曲SU-8光波导和局部软肽功能化微电极的刚柔神经电极,以解决传统神经界面中精确植入和长期生物相容性的挑战。通过微机电系统(MEMS)技术制造的光电二极管具有PBK/PPS/(PHE)2三层电化学改性,可将光电化学(PEC)噪声抑制63%,并将电荷存储容量提高51倍。聚乙二醇(PEG)启用的临时刚性层确保了精确的植入,同时允许植入后恢复灵活性和定位调整。体外测试表明,通过琼脂凝胶中的SU-8波导,有效的光传输和63%的PEC噪声峰值降低。生物相容性分析表明,与刚性硅对照相比,肽包被的PI底物提高了32.5-37.1%的细胞活力。在鲫鱼中脑体内验证,成功记录了60 ~ 80 μV的局部场电位(LFP)信号,验证了该电极的灵敏度和稳定性。该设计为神经回路分析提供了一种低损伤、高分辨率的工具。这也为未来在高时空分辨率监测神经元活动和研究神经退行性疾病方面的应用奠定了技术基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rigid-Flexible Neural Optrode with Anti-Bending Waveguides and Locally Soft Microelectrodes for Multifunctional Biocompatible Neural Regulation.

Rigid-Flexible Neural Optrode with Anti-Bending Waveguides and Locally Soft Microelectrodes for Multifunctional Biocompatible Neural Regulation.

Rigid-Flexible Neural Optrode with Anti-Bending Waveguides and Locally Soft Microelectrodes for Multifunctional Biocompatible Neural Regulation.

Rigid-Flexible Neural Optrode with Anti-Bending Waveguides and Locally Soft Microelectrodes for Multifunctional Biocompatible Neural Regulation.

This study proposes a rigid-flexible neural optrode integrated with anti-bending SU-8 optical waveguides and locally soft peptide-functionalized microelectrodes to address the challenges of precise implantation and long-term biocompatibility in traditional neural interfaces. Fabricated via microelectromechanical systems (MEMS) technology, the optrode features a PBK/PPS/(PHE)2 trilayer electrochemical modification that suppresses photoelectrochemical (PEC) noise by 63% and enhances charge storage capacity by 51 times. A polyethylene glycol (PEG)-enabled temporary rigid layer ensures precise implantation while allowing post-implantation restoration of flexibility and enabling positioning adjustment. In vitro tests demonstrate efficient light transmission through SU-8 waveguides in agar gel and a 63% reduction in PEC noise peaks. Biocompatibility analysis reveals that peptide-coated PI substrates improve cell viability by 32.5-37.1% compared to rigid silicon controls. In vivo validation in crucian carp midbrain successfully records local field potential (LFP) signals (60-80 μV), thereby confirming the optrode's sensitivity and stability. This design provides a low-damage and high-resolution tool for neural circuit analysis. It also lays a technical foundation for future applications in monitoring neuronal activity and researching neurodegenerative diseases with high spatiotemporal resolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信