{"title":"AlN陶瓷金刚石薄膜衬底的制备及其在LED封装中的性能研究。","authors":"Shasha Wei, Yusheng Sui, Yunlong Shi, Junrong Chen, Tianlei Dong, Rongchuan Lin, Zheqiao Lin","doi":"10.3390/mi16091029","DOIUrl":null,"url":null,"abstract":"<p><p>Aluminum nitride (AlN) ceramic materials have relatively low thermal conductivity and poor heat dissipation performance, and are increasingly unsuitable for high-power LED packaging. In this study, diamond films were deposited on AlN ceramic substrates by microwave plasma chemical vapor deposition (MPCVD). The effects of different process parameters on the crystal quality, surface morphology and crystal orientation of diamond films were studied, and the high thermal conductivity of diamond was used to enhance the heat dissipation ability of AlN ceramic substrates. Finally, the junction temperature and thermal resistance of LED devices packaged on AlN ceramic-diamond composite substrate, AlN ceramic substrate and aluminum substrate were tested. The experimental results show that compared with the traditional aluminum and AlN ceramic substrates, AlN ceramic-diamond composite substrates show excellent heat dissipation performance, especially under high-power conditions.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471409/pdf/","citationCount":"0","resultStr":"{\"title\":\"Study on the Preparation of Diamond Film Substrates on AlN Ceramic and Their Performance in LED Packaging.\",\"authors\":\"Shasha Wei, Yusheng Sui, Yunlong Shi, Junrong Chen, Tianlei Dong, Rongchuan Lin, Zheqiao Lin\",\"doi\":\"10.3390/mi16091029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aluminum nitride (AlN) ceramic materials have relatively low thermal conductivity and poor heat dissipation performance, and are increasingly unsuitable for high-power LED packaging. In this study, diamond films were deposited on AlN ceramic substrates by microwave plasma chemical vapor deposition (MPCVD). The effects of different process parameters on the crystal quality, surface morphology and crystal orientation of diamond films were studied, and the high thermal conductivity of diamond was used to enhance the heat dissipation ability of AlN ceramic substrates. Finally, the junction temperature and thermal resistance of LED devices packaged on AlN ceramic-diamond composite substrate, AlN ceramic substrate and aluminum substrate were tested. The experimental results show that compared with the traditional aluminum and AlN ceramic substrates, AlN ceramic-diamond composite substrates show excellent heat dissipation performance, especially under high-power conditions.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471409/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16091029\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091029","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Study on the Preparation of Diamond Film Substrates on AlN Ceramic and Their Performance in LED Packaging.
Aluminum nitride (AlN) ceramic materials have relatively low thermal conductivity and poor heat dissipation performance, and are increasingly unsuitable for high-power LED packaging. In this study, diamond films were deposited on AlN ceramic substrates by microwave plasma chemical vapor deposition (MPCVD). The effects of different process parameters on the crystal quality, surface morphology and crystal orientation of diamond films were studied, and the high thermal conductivity of diamond was used to enhance the heat dissipation ability of AlN ceramic substrates. Finally, the junction temperature and thermal resistance of LED devices packaged on AlN ceramic-diamond composite substrate, AlN ceramic substrate and aluminum substrate were tested. The experimental results show that compared with the traditional aluminum and AlN ceramic substrates, AlN ceramic-diamond composite substrates show excellent heat dissipation performance, especially under high-power conditions.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.