Olivia H Margoto, Madisyn M Szypula, Grant R Bogyo, Victor Yang, Abbas S Milani
{"title":"一种既不损失强度又提高稳定性的西部红杉水分管理塑化新技术研究。","authors":"Olivia H Margoto, Madisyn M Szypula, Grant R Bogyo, Victor Yang, Abbas S Milani","doi":"10.3390/ma18184353","DOIUrl":null,"url":null,"abstract":"<p><p>Amidst environmental concerns regarding the use of petroleum-based materials, wood and wood-based products are among the key players in the pursuit of green construction practices. However, environmental degradation of these materials remains a concern during structural design, particularly for outdoor applications. Borrowed from anatomy to preserve human body parts, this study applies and assesses a technique called 'plastination' as a new means for moisture management of Western Red Cedar (WRC). Specifically, the proposed technique includes acetone dehydration of WRC, followed by SS-151 silicone vacuum-assisted impregnation and silicone curing. To evaluate the method's effectiveness, Micro X-ray Computed Tomography (μCT), Fourier Transform Infrared (FTIR) Spectroscopy, Thermogravimetric Analysis (TGA), and static water contact angle measurements were employed. Tensile testing was also performed to quantify the treatment's effect on WRC's mechanical properties under moisture conditioning. μCT confirmed an impregnation depth of 21.5%, while FTIR and TGA results showed reduced moisture retention (3.6 wt%) in plastinated WRC due to the absence of hydroxyl groups. Mechanical testing revealed enhanced deformability in treated samples without compromising tensile strength. Upon moisture conditioning, plastinated WRC retained its tensile properties and showed 59% lower moisture absorption and 15% lower weight as compared to conditioned virgin samples.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 18","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471767/pdf/","citationCount":"0","resultStr":"{\"title\":\"Towards a New Plastination Technique for Moisture Management of Western Red Cedar Without Loss of Strength and with Enhanced Stability.\",\"authors\":\"Olivia H Margoto, Madisyn M Szypula, Grant R Bogyo, Victor Yang, Abbas S Milani\",\"doi\":\"10.3390/ma18184353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amidst environmental concerns regarding the use of petroleum-based materials, wood and wood-based products are among the key players in the pursuit of green construction practices. However, environmental degradation of these materials remains a concern during structural design, particularly for outdoor applications. Borrowed from anatomy to preserve human body parts, this study applies and assesses a technique called 'plastination' as a new means for moisture management of Western Red Cedar (WRC). Specifically, the proposed technique includes acetone dehydration of WRC, followed by SS-151 silicone vacuum-assisted impregnation and silicone curing. To evaluate the method's effectiveness, Micro X-ray Computed Tomography (μCT), Fourier Transform Infrared (FTIR) Spectroscopy, Thermogravimetric Analysis (TGA), and static water contact angle measurements were employed. Tensile testing was also performed to quantify the treatment's effect on WRC's mechanical properties under moisture conditioning. μCT confirmed an impregnation depth of 21.5%, while FTIR and TGA results showed reduced moisture retention (3.6 wt%) in plastinated WRC due to the absence of hydroxyl groups. Mechanical testing revealed enhanced deformability in treated samples without compromising tensile strength. Upon moisture conditioning, plastinated WRC retained its tensile properties and showed 59% lower moisture absorption and 15% lower weight as compared to conditioned virgin samples.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 18\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471767/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18184353\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18184353","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Towards a New Plastination Technique for Moisture Management of Western Red Cedar Without Loss of Strength and with Enhanced Stability.
Amidst environmental concerns regarding the use of petroleum-based materials, wood and wood-based products are among the key players in the pursuit of green construction practices. However, environmental degradation of these materials remains a concern during structural design, particularly for outdoor applications. Borrowed from anatomy to preserve human body parts, this study applies and assesses a technique called 'plastination' as a new means for moisture management of Western Red Cedar (WRC). Specifically, the proposed technique includes acetone dehydration of WRC, followed by SS-151 silicone vacuum-assisted impregnation and silicone curing. To evaluate the method's effectiveness, Micro X-ray Computed Tomography (μCT), Fourier Transform Infrared (FTIR) Spectroscopy, Thermogravimetric Analysis (TGA), and static water contact angle measurements were employed. Tensile testing was also performed to quantify the treatment's effect on WRC's mechanical properties under moisture conditioning. μCT confirmed an impregnation depth of 21.5%, while FTIR and TGA results showed reduced moisture retention (3.6 wt%) in plastinated WRC due to the absence of hydroxyl groups. Mechanical testing revealed enhanced deformability in treated samples without compromising tensile strength. Upon moisture conditioning, plastinated WRC retained its tensile properties and showed 59% lower moisture absorption and 15% lower weight as compared to conditioned virgin samples.
期刊介绍:
Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.