Batuhan Uslu, Sena Esen Bayer Keskin, Nurhan Türker Tokan
{"title":"用于窄带和宽带应用切换的双模可重构频率选择表面。","authors":"Batuhan Uslu, Sena Esen Bayer Keskin, Nurhan Türker Tokan","doi":"10.3390/mi16091030","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a reconfigurable frequency-selective surface (R-FSS) designed to dynamically switch between WLAN, WiMAX, and sub-6 GHz band frequencies. The electronic switching mechanism of this R-FSS is controlled in real-time using PIN-diodes. Depending on the activation state of these diodes, the structure operates in three distinct modes. Among the three modes, one exhibits polarization-stable wideband suppression, whereas the other two demonstrate polarization selectivity by interchanging between the dual-narrow and single-wide stopband regimes under orthogonal polarizations. The design is described with an equivalent-circuit model, corroborated by full-wave electromagnetic simulations, and validated through measurements of a fabricated prototype. This reconfigurability allows the proposed structure to operate across WLAN, sub-6 GHz, and WiMAX frequency ranges either with two narrow stopbands or with a single-wide stopband, while providing polarization selectivity for frequency-selective applications.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471807/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual-Mode Reconfigurable Frequency-Selective Surface for Switching Between Narrowband and Wideband Applications.\",\"authors\":\"Batuhan Uslu, Sena Esen Bayer Keskin, Nurhan Türker Tokan\",\"doi\":\"10.3390/mi16091030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a reconfigurable frequency-selective surface (R-FSS) designed to dynamically switch between WLAN, WiMAX, and sub-6 GHz band frequencies. The electronic switching mechanism of this R-FSS is controlled in real-time using PIN-diodes. Depending on the activation state of these diodes, the structure operates in three distinct modes. Among the three modes, one exhibits polarization-stable wideband suppression, whereas the other two demonstrate polarization selectivity by interchanging between the dual-narrow and single-wide stopband regimes under orthogonal polarizations. The design is described with an equivalent-circuit model, corroborated by full-wave electromagnetic simulations, and validated through measurements of a fabricated prototype. This reconfigurability allows the proposed structure to operate across WLAN, sub-6 GHz, and WiMAX frequency ranges either with two narrow stopbands or with a single-wide stopband, while providing polarization selectivity for frequency-selective applications.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471807/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16091030\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091030","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Dual-Mode Reconfigurable Frequency-Selective Surface for Switching Between Narrowband and Wideband Applications.
This study presents a reconfigurable frequency-selective surface (R-FSS) designed to dynamically switch between WLAN, WiMAX, and sub-6 GHz band frequencies. The electronic switching mechanism of this R-FSS is controlled in real-time using PIN-diodes. Depending on the activation state of these diodes, the structure operates in three distinct modes. Among the three modes, one exhibits polarization-stable wideband suppression, whereas the other two demonstrate polarization selectivity by interchanging between the dual-narrow and single-wide stopband regimes under orthogonal polarizations. The design is described with an equivalent-circuit model, corroborated by full-wave electromagnetic simulations, and validated through measurements of a fabricated prototype. This reconfigurability allows the proposed structure to operate across WLAN, sub-6 GHz, and WiMAX frequency ranges either with two narrow stopbands or with a single-wide stopband, while providing polarization selectivity for frequency-selective applications.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.