Muhib Ullah Khan, Md Munibur Rahman, Nusrat Zahan, Mostafa Kamal Masud, Subir Sarker, Md Hakimul Haque
{"title":"耐药细菌的电化学生物传感:进展、挑战和未来方向。","authors":"Muhib Ullah Khan, Md Munibur Rahman, Nusrat Zahan, Mostafa Kamal Masud, Subir Sarker, Md Hakimul Haque","doi":"10.3390/mi16090986","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid rise of antibiotic-resistant bacteria (ABR) presents an urgent global health challenge, necessitating the development of efficient and scalable diagnostic technologies. Electrochemical biosensors have emerged as a promising solution, offering high sensitivity, specificity, and adaptability for point-of-care applications. These innovative platforms utilize bio-recognition elements, advanced electrode materials, microbial enzymes, and redox-active metabolites to identify antibiotic resistance profiles at a molecular level. Recent progress in microfluidics and lab-on-a-chip systems has enabled real-time, high-throughput antimicrobial susceptibility testing, significantly improving diagnostic precision and speed. This review aims to critically evaluate recent advances in electrochemical biosensing strategies for detecting ABR, identify key challenges, and propose future directions to enhance clinical applicability. Key developments include bio-receptor-based detection strategies, novel electrode surfaces, and multiplexed platforms integrated with microfluidic systems. Additionally, this review examines essential biomarkers for detecting antibiotic resistance and explores key challenges, including variability in biomarker expression and sensor reproducibility. It also highlights practical barriers to clinical implementation, such as cost constraints and scalability concerns. By presenting innovative approaches, such as cost-effective material alternatives, advanced analytical techniques, and portable biosensing systems, this review outlines a strategic pathway for enhancing the accessibility and effectiveness of electrochemical biosensors in antibiotic resistance management.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471839/pdf/","citationCount":"0","resultStr":"{\"title\":\"Electrochemical Biosensing for Antibiotic-Resistant Bacteria: Advances, Challenges, and Future Directions.\",\"authors\":\"Muhib Ullah Khan, Md Munibur Rahman, Nusrat Zahan, Mostafa Kamal Masud, Subir Sarker, Md Hakimul Haque\",\"doi\":\"10.3390/mi16090986\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid rise of antibiotic-resistant bacteria (ABR) presents an urgent global health challenge, necessitating the development of efficient and scalable diagnostic technologies. Electrochemical biosensors have emerged as a promising solution, offering high sensitivity, specificity, and adaptability for point-of-care applications. These innovative platforms utilize bio-recognition elements, advanced electrode materials, microbial enzymes, and redox-active metabolites to identify antibiotic resistance profiles at a molecular level. Recent progress in microfluidics and lab-on-a-chip systems has enabled real-time, high-throughput antimicrobial susceptibility testing, significantly improving diagnostic precision and speed. This review aims to critically evaluate recent advances in electrochemical biosensing strategies for detecting ABR, identify key challenges, and propose future directions to enhance clinical applicability. Key developments include bio-receptor-based detection strategies, novel electrode surfaces, and multiplexed platforms integrated with microfluidic systems. Additionally, this review examines essential biomarkers for detecting antibiotic resistance and explores key challenges, including variability in biomarker expression and sensor reproducibility. It also highlights practical barriers to clinical implementation, such as cost constraints and scalability concerns. By presenting innovative approaches, such as cost-effective material alternatives, advanced analytical techniques, and portable biosensing systems, this review outlines a strategic pathway for enhancing the accessibility and effectiveness of electrochemical biosensors in antibiotic resistance management.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471839/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16090986\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16090986","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Electrochemical Biosensing for Antibiotic-Resistant Bacteria: Advances, Challenges, and Future Directions.
The rapid rise of antibiotic-resistant bacteria (ABR) presents an urgent global health challenge, necessitating the development of efficient and scalable diagnostic technologies. Electrochemical biosensors have emerged as a promising solution, offering high sensitivity, specificity, and adaptability for point-of-care applications. These innovative platforms utilize bio-recognition elements, advanced electrode materials, microbial enzymes, and redox-active metabolites to identify antibiotic resistance profiles at a molecular level. Recent progress in microfluidics and lab-on-a-chip systems has enabled real-time, high-throughput antimicrobial susceptibility testing, significantly improving diagnostic precision and speed. This review aims to critically evaluate recent advances in electrochemical biosensing strategies for detecting ABR, identify key challenges, and propose future directions to enhance clinical applicability. Key developments include bio-receptor-based detection strategies, novel electrode surfaces, and multiplexed platforms integrated with microfluidic systems. Additionally, this review examines essential biomarkers for detecting antibiotic resistance and explores key challenges, including variability in biomarker expression and sensor reproducibility. It also highlights practical barriers to clinical implementation, such as cost constraints and scalability concerns. By presenting innovative approaches, such as cost-effective material alternatives, advanced analytical techniques, and portable biosensing systems, this review outlines a strategic pathway for enhancing the accessibility and effectiveness of electrochemical biosensors in antibiotic resistance management.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.