荧光自由基捕获抗氧化探针的活细胞成像显示铁下垂的发生和进展。

IF 20.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Laiyi Xu, Wenzhou Zhang, Juan F Sánchez Tejeda, Denys Holovan, Julia McCain, Terri C Lovell, Gonzalo Cosa
{"title":"荧光自由基捕获抗氧化探针的活细胞成像显示铁下垂的发生和进展。","authors":"Laiyi Xu, Wenzhou Zhang, Juan F Sánchez Tejeda, Denys Holovan, Julia McCain, Terri C Lovell, Gonzalo Cosa","doi":"10.1038/s41557-025-01966-x","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis is a form of cell death involving the formation of lipid peroxyl radicals, with potential therapeutic applications. Sensitivity to ferroptosis is expected to vary in different organelles. To monitor in real time the onset and progression of lipid peroxidation in ferroptosis, here we report lipophilic fluorogenic radical-trapping antioxidants, embedding in endoplasmic reticulum, lysosomes, mitochondria and plasma membrane. We show that endoplasmic reticulum- and lysosome-embedding fluorogenic radical-trapping antioxidants are most effective in protecting from cell death. The onset of lipid peroxidation happens in the endoplasmic reticulum, with lipid hydroperoxide accumulating in Golgi-associated vesicles. Disintegration of these structures spreads lipid hydroperoxide intracellularly, acting as 'free radical embers'. Outwards migration of oxidized lipids to plasma membrane, the ultimate sink for oxidized lipids, was recorded. Our results underscore Golgi-associated structures as a site to regulate ferroptosis progression. The work further positions fluorogenic radical-trapping antioxidants as valuable tools for unravelling the dynamic subcellular progression of ferroptosis.</p>","PeriodicalId":18909,"journal":{"name":"Nature chemistry","volume":" ","pages":""},"PeriodicalIF":20.2000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Live-cell imaging with fluorogenic radical-trapping antioxidant probes reveals the onset and progression of ferroptosis.\",\"authors\":\"Laiyi Xu, Wenzhou Zhang, Juan F Sánchez Tejeda, Denys Holovan, Julia McCain, Terri C Lovell, Gonzalo Cosa\",\"doi\":\"10.1038/s41557-025-01966-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis is a form of cell death involving the formation of lipid peroxyl radicals, with potential therapeutic applications. Sensitivity to ferroptosis is expected to vary in different organelles. To monitor in real time the onset and progression of lipid peroxidation in ferroptosis, here we report lipophilic fluorogenic radical-trapping antioxidants, embedding in endoplasmic reticulum, lysosomes, mitochondria and plasma membrane. We show that endoplasmic reticulum- and lysosome-embedding fluorogenic radical-trapping antioxidants are most effective in protecting from cell death. The onset of lipid peroxidation happens in the endoplasmic reticulum, with lipid hydroperoxide accumulating in Golgi-associated vesicles. Disintegration of these structures spreads lipid hydroperoxide intracellularly, acting as 'free radical embers'. Outwards migration of oxidized lipids to plasma membrane, the ultimate sink for oxidized lipids, was recorded. Our results underscore Golgi-associated structures as a site to regulate ferroptosis progression. The work further positions fluorogenic radical-trapping antioxidants as valuable tools for unravelling the dynamic subcellular progression of ferroptosis.</p>\",\"PeriodicalId\":18909,\"journal\":{\"name\":\"Nature chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s41557-025-01966-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-025-01966-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铁下垂是一种涉及脂质过氧化自由基形成的细胞死亡形式,具有潜在的治疗应用。对铁下垂的敏感性预计在不同的细胞器中有所不同。为了实时监测铁死亡中脂质过氧化的发生和进展,我们报道了嵌入内质网、溶酶体、线粒体和质膜的亲脂性荧光自由基捕获抗氧化剂。我们发现内质网和溶酶体嵌入的荧光自由基捕获抗氧化剂在保护细胞死亡方面是最有效的。脂质过氧化发生在内质网,脂质过氧化氢在高尔基相关囊泡中积累。这些结构的解体使脂质过氧化氢在细胞内扩散,起到“自由基余烬”的作用。记录了氧化脂质向外迁移至质膜的过程,质膜是氧化脂质的最终汇。我们的结果强调高尔基相关结构是调节铁下垂进展的一个位点。这项工作进一步定位了荧光自由基捕获抗氧化剂作为揭示铁下垂动态亚细胞进展的有价值的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Live-cell imaging with fluorogenic radical-trapping antioxidant probes reveals the onset and progression of ferroptosis.

Ferroptosis is a form of cell death involving the formation of lipid peroxyl radicals, with potential therapeutic applications. Sensitivity to ferroptosis is expected to vary in different organelles. To monitor in real time the onset and progression of lipid peroxidation in ferroptosis, here we report lipophilic fluorogenic radical-trapping antioxidants, embedding in endoplasmic reticulum, lysosomes, mitochondria and plasma membrane. We show that endoplasmic reticulum- and lysosome-embedding fluorogenic radical-trapping antioxidants are most effective in protecting from cell death. The onset of lipid peroxidation happens in the endoplasmic reticulum, with lipid hydroperoxide accumulating in Golgi-associated vesicles. Disintegration of these structures spreads lipid hydroperoxide intracellularly, acting as 'free radical embers'. Outwards migration of oxidized lipids to plasma membrane, the ultimate sink for oxidized lipids, was recorded. Our results underscore Golgi-associated structures as a site to regulate ferroptosis progression. The work further positions fluorogenic radical-trapping antioxidants as valuable tools for unravelling the dynamic subcellular progression of ferroptosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature chemistry
Nature chemistry 化学-化学综合
CiteScore
29.60
自引率
1.40%
发文量
226
审稿时长
1.7 months
期刊介绍: Nature Chemistry is a monthly journal that publishes groundbreaking and significant research in all areas of chemistry. It covers traditional subjects such as analytical, inorganic, organic, and physical chemistry, as well as a wide range of other topics including catalysis, computational and theoretical chemistry, and environmental chemistry. The journal also features interdisciplinary research at the interface of chemistry with biology, materials science, nanotechnology, and physics. Manuscripts detailing such multidisciplinary work are encouraged, as long as the central theme pertains to chemistry. Aside from primary research, Nature Chemistry publishes review articles, news and views, research highlights from other journals, commentaries, book reviews, correspondence, and analysis of the broader chemical landscape. It also addresses crucial issues related to education, funding, policy, intellectual property, and the societal impact of chemistry. Nature Chemistry is dedicated to ensuring the highest standards of original research through a fair and rigorous review process. It offers authors maximum visibility for their papers, access to a broad readership, exceptional copy editing and production standards, rapid publication, and independence from academic societies and other vested interests. Overall, Nature Chemistry aims to be the authoritative voice of the global chemical community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信