几何参数对变截面微通道混合效率及优化的影响

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-08-29 DOI:10.3390/mi16091001
Lijun Yang, Yu Hang, Renjie Liu, Zongan Li, Ye Wu
{"title":"几何参数对变截面微通道混合效率及优化的影响","authors":"Lijun Yang, Yu Hang, Renjie Liu, Zongan Li, Ye Wu","doi":"10.3390/mi16091001","DOIUrl":null,"url":null,"abstract":"<p><p>Micromixers are important devices used in many fields for various applications which provide high mixing efficiencies and reduce the amount of reagents and samples. In addition, effective premixing of reactants is essential for obtaining high reaction rates. In order to further improve the mixing performance, three-dimensional numerical simulations and optimizations of the flow and mixing characteristics within a variable cross section T-shaped micromixer were carried out. The effects of the geometric parameters containing channel diameter, channel shape, channel contraction and expansion ratio, and number of expansion units on the mixing were investigated with the evaluation criteria of mixing index and performance index. The optimized geometric parameters of the channel were a diameter of 0.2 mm, the shape of Sem channel, an expansion ratio of 1:3, and a number of expansion units of 7, respectively. It can be showed that the mixing efficiency of the optimized micromixer was greatly improved, and the mixing index at different velocities could reach up to more than 0.98.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471991/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of Geometric Parameters on Mixing Efficiency and Optimization in Variable Cross Section Microchannels.\",\"authors\":\"Lijun Yang, Yu Hang, Renjie Liu, Zongan Li, Ye Wu\",\"doi\":\"10.3390/mi16091001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Micromixers are important devices used in many fields for various applications which provide high mixing efficiencies and reduce the amount of reagents and samples. In addition, effective premixing of reactants is essential for obtaining high reaction rates. In order to further improve the mixing performance, three-dimensional numerical simulations and optimizations of the flow and mixing characteristics within a variable cross section T-shaped micromixer were carried out. The effects of the geometric parameters containing channel diameter, channel shape, channel contraction and expansion ratio, and number of expansion units on the mixing were investigated with the evaluation criteria of mixing index and performance index. The optimized geometric parameters of the channel were a diameter of 0.2 mm, the shape of Sem channel, an expansion ratio of 1:3, and a number of expansion units of 7, respectively. It can be showed that the mixing efficiency of the optimized micromixer was greatly improved, and the mixing index at different velocities could reach up to more than 0.98.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471991/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16091001\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

微混合器是许多领域中用于各种应用的重要设备,它提供了高混合效率并减少了试剂和样品的数量。此外,反应物的有效预混对于获得高反应速率至关重要。为了进一步提高混合性能,对变截面t型微混合器内的流动和混合特性进行了三维数值模拟和优化。以混合指标和性能指标为评价标准,研究了沟道直径、沟道形状、沟道缩胀比、膨胀单元数等几何参数对混合过程的影响。优化后的通道几何参数为直径0.2 mm, Sem通道形状,膨胀比为1:3,膨胀单元数为7。结果表明,优化后的微混合器的混合效率大大提高,不同转速下的混合指数最高可达0.98以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Geometric Parameters on Mixing Efficiency and Optimization in Variable Cross Section Microchannels.

Micromixers are important devices used in many fields for various applications which provide high mixing efficiencies and reduce the amount of reagents and samples. In addition, effective premixing of reactants is essential for obtaining high reaction rates. In order to further improve the mixing performance, three-dimensional numerical simulations and optimizations of the flow and mixing characteristics within a variable cross section T-shaped micromixer were carried out. The effects of the geometric parameters containing channel diameter, channel shape, channel contraction and expansion ratio, and number of expansion units on the mixing were investigated with the evaluation criteria of mixing index and performance index. The optimized geometric parameters of the channel were a diameter of 0.2 mm, the shape of Sem channel, an expansion ratio of 1:3, and a number of expansion units of 7, respectively. It can be showed that the mixing efficiency of the optimized micromixer was greatly improved, and the mixing index at different velocities could reach up to more than 0.98.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信