使离轴光学曲面旋转中x轴伺服跟随误差最小的d形刀具路径优化设计。

IF 3.2 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-09-17 DOI:10.3390/ma18184343
Baohua Chen, Quanying Wu, Yunhai Tang, Fei Wang, Junliu Fan, Xiaoyi Chen, Haomo Yu, Yi Sun
{"title":"使离轴光学曲面旋转中x轴伺服跟随误差最小的d形刀具路径优化设计。","authors":"Baohua Chen, Quanying Wu, Yunhai Tang, Fei Wang, Junliu Fan, Xiaoyi Chen, Haomo Yu, Yi Sun","doi":"10.3390/ma18184343","DOIUrl":null,"url":null,"abstract":"<p><p>In the slow tool servo (STS) turning technology for optical lenses, the D-shaped toolpath can improve the quality of the optical surfaces of off-axis aspheric and cylindrical microlens arrays. However, the traditional D-shaped toolpath has the problem of excessive servo following error in the X-axis. To address this issue, the projection of the D-shaped toolpath in the XZ plane is divided into a cutting zone and a transition zone. In the transition zone, an equation system based on continuity constraints (surface height, feed-rate, acceleration) is established. By solving this system of equations, a toolpath can be obtained along which the feed-rate of the X-axis varies smoothly. An example shows that the acceleration of the X-axis of the lathe is reduced by 84% compared to the traditional D-shaped toolpath. In the XZC interpolation mode, the spindle velocity of the C-axis changes smoothly. An off-axis spherical surface and an integral mirror have been machined using the optimized D-shaped toolpath. The X-axis servo following error of the lathe during processing is within 7 nm, and the surface shape accuracy reaches 0.361λ at 632.8 nm. This method enables high-precision processing of off-axis curved surfaces and cylindrical arrays.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 18","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471532/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optimal D-Shaped Toolpath Design for Minimizing X-Axis Servo Following Error in Turning the Off-Axis Optical Surfaces.\",\"authors\":\"Baohua Chen, Quanying Wu, Yunhai Tang, Fei Wang, Junliu Fan, Xiaoyi Chen, Haomo Yu, Yi Sun\",\"doi\":\"10.3390/ma18184343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the slow tool servo (STS) turning technology for optical lenses, the D-shaped toolpath can improve the quality of the optical surfaces of off-axis aspheric and cylindrical microlens arrays. However, the traditional D-shaped toolpath has the problem of excessive servo following error in the X-axis. To address this issue, the projection of the D-shaped toolpath in the XZ plane is divided into a cutting zone and a transition zone. In the transition zone, an equation system based on continuity constraints (surface height, feed-rate, acceleration) is established. By solving this system of equations, a toolpath can be obtained along which the feed-rate of the X-axis varies smoothly. An example shows that the acceleration of the X-axis of the lathe is reduced by 84% compared to the traditional D-shaped toolpath. In the XZC interpolation mode, the spindle velocity of the C-axis changes smoothly. An off-axis spherical surface and an integral mirror have been machined using the optimized D-shaped toolpath. The X-axis servo following error of the lathe during processing is within 7 nm, and the surface shape accuracy reaches 0.361λ at 632.8 nm. This method enables high-precision processing of off-axis curved surfaces and cylindrical arrays.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 18\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471532/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18184343\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18184343","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在光学透镜慢刀伺服车削技术中,采用d型刀路可以提高离轴非球面和圆柱微透镜阵列光学表面的加工质量。然而,传统的d型刀路存在x轴伺服跟随误差过大的问题。为了解决这个问题,将d形刀具轨迹在XZ平面上的投影划分为切削区和过渡区。在过渡区,建立了基于连续约束(面高、进给速度、加速度)的方程系统。通过求解该方程组,可以得到x轴进给速度平滑变化的刀具轨迹。实例表明,与传统的d型刀路相比,该机床的x轴加速度降低了84%。在XZC插补方式下,c轴主轴速度变化平稳。利用优化后的d型刀路加工了离轴球面和整体镜面。加工过程中车床的x轴伺服跟随误差在7 nm以内,在632.8 nm处表面形状精度达到0.361λ。该方法可实现离轴曲面和圆柱阵列的高精度加工。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal D-Shaped Toolpath Design for Minimizing X-Axis Servo Following Error in Turning the Off-Axis Optical Surfaces.

In the slow tool servo (STS) turning technology for optical lenses, the D-shaped toolpath can improve the quality of the optical surfaces of off-axis aspheric and cylindrical microlens arrays. However, the traditional D-shaped toolpath has the problem of excessive servo following error in the X-axis. To address this issue, the projection of the D-shaped toolpath in the XZ plane is divided into a cutting zone and a transition zone. In the transition zone, an equation system based on continuity constraints (surface height, feed-rate, acceleration) is established. By solving this system of equations, a toolpath can be obtained along which the feed-rate of the X-axis varies smoothly. An example shows that the acceleration of the X-axis of the lathe is reduced by 84% compared to the traditional D-shaped toolpath. In the XZC interpolation mode, the spindle velocity of the C-axis changes smoothly. An off-axis spherical surface and an integral mirror have been machined using the optimized D-shaped toolpath. The X-axis servo following error of the lathe during processing is within 7 nm, and the surface shape accuracy reaches 0.361λ at 632.8 nm. This method enables high-precision processing of off-axis curved surfaces and cylindrical arrays.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信