基于物理引导机器学习的GaN CAVET特性预测与优化。

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2025-08-30 DOI:10.3390/mi16091005
Wenbo Wu, Jie Wang, Jiangtao Su, Zhanfei Chen, Zhiping Yu
{"title":"基于物理引导机器学习的GaN CAVET特性预测与优化。","authors":"Wenbo Wu, Jie Wang, Jiangtao Su, Zhanfei Chen, Zhiping Yu","doi":"10.3390/mi16091005","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a physics-guided machine learning (PGML) approach to model the I-V characteristics of GaN current aperture vertical field effect transistors (CAVET). By adopting the method of transfer learning and the shortcut structure, a physically guided neural network model is established. The shallow neural network with tanh as the basis function is combined with a hypernetwork that dynamically generates its weight parameters. The influence of transconductance is added to the loss function. This model can synchronously predict the output and transfer characteristics of the device. Under the condition of small samples, the prediction error is controlled within 5%, and the R2 value reaches above 0.99. The proposed PGML approach outperforms conventional approaches, ensuring physically meaningful and robust predictions for device optimization and circuit-level simulations.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471978/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characteristics Prediction and Optimization of GaN CAVET Using a Novel Physics-Guided Machine Learning Method.\",\"authors\":\"Wenbo Wu, Jie Wang, Jiangtao Su, Zhanfei Chen, Zhiping Yu\",\"doi\":\"10.3390/mi16091005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a physics-guided machine learning (PGML) approach to model the I-V characteristics of GaN current aperture vertical field effect transistors (CAVET). By adopting the method of transfer learning and the shortcut structure, a physically guided neural network model is established. The shallow neural network with tanh as the basis function is combined with a hypernetwork that dynamically generates its weight parameters. The influence of transconductance is added to the loss function. This model can synchronously predict the output and transfer characteristics of the device. Under the condition of small samples, the prediction error is controlled within 5%, and the R2 value reaches above 0.99. The proposed PGML approach outperforms conventional approaches, ensuring physically meaningful and robust predictions for device optimization and circuit-level simulations.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471978/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16091005\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091005","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种物理引导机器学习(PGML)方法来模拟GaN电流孔径垂直场效应晶体管(CAVET)的I-V特性。采用迁移学习方法和快捷结构,建立了物理引导神经网络模型。以tanh为基函数的浅层神经网络与动态生成其权参数的超网络相结合。在损耗函数中加入了跨导的影响。该模型可以同步预测器件的输出和传输特性。在小样本条件下,预测误差控制在5%以内,R2值达到0.99以上。提出的PGML方法优于传统方法,确保对器件优化和电路级模拟进行物理上有意义和稳健的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Characteristics Prediction and Optimization of GaN CAVET Using a Novel Physics-Guided Machine Learning Method.

Characteristics Prediction and Optimization of GaN CAVET Using a Novel Physics-Guided Machine Learning Method.

Characteristics Prediction and Optimization of GaN CAVET Using a Novel Physics-Guided Machine Learning Method.

Characteristics Prediction and Optimization of GaN CAVET Using a Novel Physics-Guided Machine Learning Method.

This paper presents a physics-guided machine learning (PGML) approach to model the I-V characteristics of GaN current aperture vertical field effect transistors (CAVET). By adopting the method of transfer learning and the shortcut structure, a physically guided neural network model is established. The shallow neural network with tanh as the basis function is combined with a hypernetwork that dynamically generates its weight parameters. The influence of transconductance is added to the loss function. This model can synchronously predict the output and transfer characteristics of the device. Under the condition of small samples, the prediction error is controlled within 5%, and the R2 value reaches above 0.99. The proposed PGML approach outperforms conventional approaches, ensuring physically meaningful and robust predictions for device optimization and circuit-level simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信