304不锈钢大幅面激光抠图工艺的实验性能分析。

IF 3.2 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-09-22 DOI:10.3390/ma18184412
Qianqian Ding, Mingdi Wang, Xihuai Wang, Peijiao Huang, Zirui Wang, Yeyi Ji
{"title":"304不锈钢大幅面激光抠图工艺的实验性能分析。","authors":"Qianqian Ding, Mingdi Wang, Xihuai Wang, Peijiao Huang, Zirui Wang, Yeyi Ji","doi":"10.3390/ma18184412","DOIUrl":null,"url":null,"abstract":"<p><p>In response to the demand for rapid matte finishing on large-format 304 stainless steel surfaces, this study utilized four fiber laser devices (output wavelength: 1064 nm, output power: 100 W, maximum modulation frequency: 4 kHz) to simultaneously perform surface matte finishing experiments on 304 stainless steel, with the aim of fabricating anti-reflective micro-nano structures. During the experiments, by systematically investigating the influence of parameters-including laser power, scanning speed, frequency, and idle speed of a single laser head-on the matte finishing process, the optimal processing parameters for a single laser head were determined as follows: laser power of 20 W, scanning speed of 11,000 mm/s, and frequency of 80 kHz. For large-area high-speed laser matte finishing, the delay of laser on/off was adjusted to compensate for the galvanometer's motion trajectory, thereby ensuring uniform ablation at both the start and end positions of the processing path. Furthermore, in the context of large-area rapid multi-head laser matte finishing on 304 stainless steel, the overlapping of surface regions processed by different galvanometers was achieved by calibrating the motion start and end points of each galvanometer. The optimal overlapping parameters were successfully obtained. This study provides technical support for environmentally friendly matte finishing of stainless steel and offers valuable insights for its application in the stainless steel home appliance industry.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 18","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471352/pdf/","citationCount":"0","resultStr":"{\"title\":\"Experimental Performance Analysis of Large-Format 304 Stainless Steel Surface Laser Matting Process.\",\"authors\":\"Qianqian Ding, Mingdi Wang, Xihuai Wang, Peijiao Huang, Zirui Wang, Yeyi Ji\",\"doi\":\"10.3390/ma18184412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to the demand for rapid matte finishing on large-format 304 stainless steel surfaces, this study utilized four fiber laser devices (output wavelength: 1064 nm, output power: 100 W, maximum modulation frequency: 4 kHz) to simultaneously perform surface matte finishing experiments on 304 stainless steel, with the aim of fabricating anti-reflective micro-nano structures. During the experiments, by systematically investigating the influence of parameters-including laser power, scanning speed, frequency, and idle speed of a single laser head-on the matte finishing process, the optimal processing parameters for a single laser head were determined as follows: laser power of 20 W, scanning speed of 11,000 mm/s, and frequency of 80 kHz. For large-area high-speed laser matte finishing, the delay of laser on/off was adjusted to compensate for the galvanometer's motion trajectory, thereby ensuring uniform ablation at both the start and end positions of the processing path. Furthermore, in the context of large-area rapid multi-head laser matte finishing on 304 stainless steel, the overlapping of surface regions processed by different galvanometers was achieved by calibrating the motion start and end points of each galvanometer. The optimal overlapping parameters were successfully obtained. This study provides technical support for environmentally friendly matte finishing of stainless steel and offers valuable insights for its application in the stainless steel home appliance industry.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 18\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471352/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18184412\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18184412","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对大幅面304不锈钢表面快速哑光处理的需求,本研究利用4台光纤激光器(输出波长1064 nm,输出功率100 W,最大调制频率4 kHz)同时对304不锈钢表面进行哑光处理实验,目的是制备抗反射微纳结构。在实验中,通过系统研究激光功率、扫描速度、频率、单激光头空闲速度等参数对哑光精加工工艺的影响,确定了单激光头的最佳加工参数为:激光功率20 W,扫描速度11000 mm/s,频率80 kHz。对于大面积高速激光磨砂精加工,通过调整激光开/关延时来补偿振镜的运动轨迹,从而保证加工路径起始和结束位置的均匀烧蚀。此外,在304不锈钢的大面积快速多头激光哑光精加工中,通过标定每个振镜的运动起点和终点,实现了不同振镜加工表面区域的重叠。成功地获得了最优的重叠参数。本研究为不锈钢环保哑光处理提供技术支持,并为其在不锈钢家电行业的应用提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Performance Analysis of Large-Format 304 Stainless Steel Surface Laser Matting Process.

In response to the demand for rapid matte finishing on large-format 304 stainless steel surfaces, this study utilized four fiber laser devices (output wavelength: 1064 nm, output power: 100 W, maximum modulation frequency: 4 kHz) to simultaneously perform surface matte finishing experiments on 304 stainless steel, with the aim of fabricating anti-reflective micro-nano structures. During the experiments, by systematically investigating the influence of parameters-including laser power, scanning speed, frequency, and idle speed of a single laser head-on the matte finishing process, the optimal processing parameters for a single laser head were determined as follows: laser power of 20 W, scanning speed of 11,000 mm/s, and frequency of 80 kHz. For large-area high-speed laser matte finishing, the delay of laser on/off was adjusted to compensate for the galvanometer's motion trajectory, thereby ensuring uniform ablation at both the start and end positions of the processing path. Furthermore, in the context of large-area rapid multi-head laser matte finishing on 304 stainless steel, the overlapping of surface regions processed by different galvanometers was achieved by calibrating the motion start and end points of each galvanometer. The optimal overlapping parameters were successfully obtained. This study provides technical support for environmentally friendly matte finishing of stainless steel and offers valuable insights for its application in the stainless steel home appliance industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信