{"title":"t结微通道中无源液滴的产生:实验和晶格玻尔兹曼模拟。","authors":"Xiang Li, Weiran Wu, Zhiqiang Dong, Yiming Wang, Peng Yu","doi":"10.3390/mi16091011","DOIUrl":null,"url":null,"abstract":"<p><p>The present study investigates passive microdroplet generation in a T-junction microchannel using microscopic observations, microscale particle image velocimetry (Micro-PIV) visualization, and lattice Boltzmann simulations. The key flow regimes, i.e., dripping, threading, and parallel flow, are characterized by analyzing the balance between hydrodynamic forces and surface tension, revealing the critical role of the flow rate ratio of the continuous to dispersed fluids in regime transitions. Micro-PIV visualizes velocity fields and vortex structures during droplet formation, while a lattice Boltzmann model with wetting boundary conditions captures interface deformation and flow dynamics, showing good agreement with experiments in the dripping and threading regimes but discrepancies in the parallel flow regime due to neglected surface roughness. The present experimental results highlight non-monotonic trends in the maximum head interface and breakup positions of the dispersed fluid under various flow rates, reflecting the competition between the squeezing and shearing forces of the continuous fluid and the hydrodynamic and surface tension forces of the dispersed fluid. Quantitative analysis shows that the droplet size increases with the flow rate of continuous fluid but decreases with the flow rate of dispersed fluid, while generation frequency rises monotonically with the flow rate of dispersed fluid. The dimensionless droplet length correlates with the flow rate ratio, enabling tunable control over droplet size and flow regimes. This work enhances understanding of T-junction microdroplet generation mechanisms, offering insights for applications in precision biology, material fabrication, and drug delivery.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"16 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471960/pdf/","citationCount":"0","resultStr":"{\"title\":\"Passive Droplet Generation in T-Junction Microchannel: Experiments and Lattice Boltzmann Simulations.\",\"authors\":\"Xiang Li, Weiran Wu, Zhiqiang Dong, Yiming Wang, Peng Yu\",\"doi\":\"10.3390/mi16091011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study investigates passive microdroplet generation in a T-junction microchannel using microscopic observations, microscale particle image velocimetry (Micro-PIV) visualization, and lattice Boltzmann simulations. The key flow regimes, i.e., dripping, threading, and parallel flow, are characterized by analyzing the balance between hydrodynamic forces and surface tension, revealing the critical role of the flow rate ratio of the continuous to dispersed fluids in regime transitions. Micro-PIV visualizes velocity fields and vortex structures during droplet formation, while a lattice Boltzmann model with wetting boundary conditions captures interface deformation and flow dynamics, showing good agreement with experiments in the dripping and threading regimes but discrepancies in the parallel flow regime due to neglected surface roughness. The present experimental results highlight non-monotonic trends in the maximum head interface and breakup positions of the dispersed fluid under various flow rates, reflecting the competition between the squeezing and shearing forces of the continuous fluid and the hydrodynamic and surface tension forces of the dispersed fluid. Quantitative analysis shows that the droplet size increases with the flow rate of continuous fluid but decreases with the flow rate of dispersed fluid, while generation frequency rises monotonically with the flow rate of dispersed fluid. The dimensionless droplet length correlates with the flow rate ratio, enabling tunable control over droplet size and flow regimes. This work enhances understanding of T-junction microdroplet generation mechanisms, offering insights for applications in precision biology, material fabrication, and drug delivery.</p>\",\"PeriodicalId\":18508,\"journal\":{\"name\":\"Micromachines\",\"volume\":\"16 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471960/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micromachines\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/mi16091011\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi16091011","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Passive Droplet Generation in T-Junction Microchannel: Experiments and Lattice Boltzmann Simulations.
The present study investigates passive microdroplet generation in a T-junction microchannel using microscopic observations, microscale particle image velocimetry (Micro-PIV) visualization, and lattice Boltzmann simulations. The key flow regimes, i.e., dripping, threading, and parallel flow, are characterized by analyzing the balance between hydrodynamic forces and surface tension, revealing the critical role of the flow rate ratio of the continuous to dispersed fluids in regime transitions. Micro-PIV visualizes velocity fields and vortex structures during droplet formation, while a lattice Boltzmann model with wetting boundary conditions captures interface deformation and flow dynamics, showing good agreement with experiments in the dripping and threading regimes but discrepancies in the parallel flow regime due to neglected surface roughness. The present experimental results highlight non-monotonic trends in the maximum head interface and breakup positions of the dispersed fluid under various flow rates, reflecting the competition between the squeezing and shearing forces of the continuous fluid and the hydrodynamic and surface tension forces of the dispersed fluid. Quantitative analysis shows that the droplet size increases with the flow rate of continuous fluid but decreases with the flow rate of dispersed fluid, while generation frequency rises monotonically with the flow rate of dispersed fluid. The dimensionless droplet length correlates with the flow rate ratio, enabling tunable control over droplet size and flow regimes. This work enhances understanding of T-junction microdroplet generation mechanisms, offering insights for applications in precision biology, material fabrication, and drug delivery.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.