{"title":"通过HIF-ROS-SLC7A11/GPX4途径参与吸入聚苯乙烯微塑料导致心肌纤维化的铁下沉。","authors":"Danyang Huang, Huiwen Kang, Ziyan Liu, Wei Zhang, Jingyu Wang, Ziyan Wang, Guangyu Jiang, Ai Gao","doi":"10.1016/j.jes.2025.04.059","DOIUrl":null,"url":null,"abstract":"<p><p>The issue of microplastic (MPs) pollution has received increased attention in recent years. Studies have indicated that inhalation of microplastics may result in the cardiovascular harm. However, the specific mechanism remains to be elucidated. In this study, 5 µm polystyrene microplastics (PS-MPs) were employed to construct in vivo and in vitro exposure models to investigate the potential mechanisms of microplastic-induced cardiac fibrosis. In vivo model of respiratory exposure to MPs, echocardiography observed a decrease in systolic-diastolic function of the mouse heart, and myocardial tissue showed significant mitochondrial morphological abnormalities and myocardial fibrosis. In vitro models also revealed upregulation of fibrosis indicators in human cardiomyocytes AC16 cells. Transcriptome and RT-qPCR assay exposed that ferroptosis-related pathways were significantly gathered in the MPs group, with decreased expression of ferroptosis related genes SLC7A11 and GPX4. Liproxstatin-1 (Lip-1), a ferroptosis inhibitor, significantly ameliorated MPs-induced cardiomyocyte fibrosis and ferroptosis. We further demonstrated that inhibition of hypoxia-inducible factor α (HIF-α) and oxidative stress ameliorated PS-MPs-induced cardiomyocyte ferroptosis, and thus upregulation of the HIF pathway and oxidative stress may be the upstream mechanism of MPs-induced ferroptosis in myocardial fibrosis. Above all, our study demonstrated that MPs exposure resulted in cardiac fibrosis via the HIF-ROS-SLC7A11/GPX4 signaling pathway.</p>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"159 ","pages":"391-402"},"PeriodicalIF":6.3000,"publicationDate":"2026-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ferroptosis involved in inhaled polystyrene microplastics leaded myocardial fibrosis through HIF-ROS-SLC7A11/GPX4 Pathway.\",\"authors\":\"Danyang Huang, Huiwen Kang, Ziyan Liu, Wei Zhang, Jingyu Wang, Ziyan Wang, Guangyu Jiang, Ai Gao\",\"doi\":\"10.1016/j.jes.2025.04.059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The issue of microplastic (MPs) pollution has received increased attention in recent years. Studies have indicated that inhalation of microplastics may result in the cardiovascular harm. However, the specific mechanism remains to be elucidated. In this study, 5 µm polystyrene microplastics (PS-MPs) were employed to construct in vivo and in vitro exposure models to investigate the potential mechanisms of microplastic-induced cardiac fibrosis. In vivo model of respiratory exposure to MPs, echocardiography observed a decrease in systolic-diastolic function of the mouse heart, and myocardial tissue showed significant mitochondrial morphological abnormalities and myocardial fibrosis. In vitro models also revealed upregulation of fibrosis indicators in human cardiomyocytes AC16 cells. Transcriptome and RT-qPCR assay exposed that ferroptosis-related pathways were significantly gathered in the MPs group, with decreased expression of ferroptosis related genes SLC7A11 and GPX4. Liproxstatin-1 (Lip-1), a ferroptosis inhibitor, significantly ameliorated MPs-induced cardiomyocyte fibrosis and ferroptosis. We further demonstrated that inhibition of hypoxia-inducible factor α (HIF-α) and oxidative stress ameliorated PS-MPs-induced cardiomyocyte ferroptosis, and thus upregulation of the HIF pathway and oxidative stress may be the upstream mechanism of MPs-induced ferroptosis in myocardial fibrosis. Above all, our study demonstrated that MPs exposure resulted in cardiac fibrosis via the HIF-ROS-SLC7A11/GPX4 signaling pathway.</p>\",\"PeriodicalId\":15788,\"journal\":{\"name\":\"Journal of Environmental Sciences-china\",\"volume\":\"159 \",\"pages\":\"391-402\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2026-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Sciences-china\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jes.2025.04.059\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jes.2025.04.059","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Ferroptosis involved in inhaled polystyrene microplastics leaded myocardial fibrosis through HIF-ROS-SLC7A11/GPX4 Pathway.
The issue of microplastic (MPs) pollution has received increased attention in recent years. Studies have indicated that inhalation of microplastics may result in the cardiovascular harm. However, the specific mechanism remains to be elucidated. In this study, 5 µm polystyrene microplastics (PS-MPs) were employed to construct in vivo and in vitro exposure models to investigate the potential mechanisms of microplastic-induced cardiac fibrosis. In vivo model of respiratory exposure to MPs, echocardiography observed a decrease in systolic-diastolic function of the mouse heart, and myocardial tissue showed significant mitochondrial morphological abnormalities and myocardial fibrosis. In vitro models also revealed upregulation of fibrosis indicators in human cardiomyocytes AC16 cells. Transcriptome and RT-qPCR assay exposed that ferroptosis-related pathways were significantly gathered in the MPs group, with decreased expression of ferroptosis related genes SLC7A11 and GPX4. Liproxstatin-1 (Lip-1), a ferroptosis inhibitor, significantly ameliorated MPs-induced cardiomyocyte fibrosis and ferroptosis. We further demonstrated that inhibition of hypoxia-inducible factor α (HIF-α) and oxidative stress ameliorated PS-MPs-induced cardiomyocyte ferroptosis, and thus upregulation of the HIF pathway and oxidative stress may be the upstream mechanism of MPs-induced ferroptosis in myocardial fibrosis. Above all, our study demonstrated that MPs exposure resulted in cardiac fibrosis via the HIF-ROS-SLC7A11/GPX4 signaling pathway.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.