自旋波的从头计算:理论方法和应用综述。

IF 3.2 3区 材料科学 Q3 CHEMISTRY, PHYSICAL
Materials Pub Date : 2025-09-22 DOI:10.3390/ma18184431
Michael Neugum, Arno Schindlmayr
{"title":"自旋波的从头计算:理论方法和应用综述。","authors":"Michael Neugum, Arno Schindlmayr","doi":"10.3390/ma18184431","DOIUrl":null,"url":null,"abstract":"<p><p>Spin waves represent an important class of low-energy excitations in magnetic solids, which influence the thermodynamic properties and play a major role in technical applications, such as spintronics or magnetic data storage. Despite the enormous advances of ab initio simulations in materials science, quantitative calculations of spin-wave spectra still pose a significant challenge, because the collective nature of the spin dynamics requires an accurate treatment of the Coulomb interaction between the electrons. As a consequence, simple lattice models like the Heisenberg Hamiltonian are still widespread in practical investigations, but modern techniques like time-dependent density-functional theory or many-body perturbation theory also open a route to material-specific spin-wave calculations from first principles. Although both are in principle exact, actual implementations necessarily employ approximations for electronic exchange and correlation as well as additional numerical simplifications. In this review, we recapitulate the theoretical foundations of ab initio spin-wave calculations and analyze the common approximations that underlie present implementations. In addition, we survey the available results for spin-wave dispersions of various magnetic materials and compare the performance of different computational approaches. In this way, we provide an overview of the present state of the art and identify directions for further developments.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":"18 18","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471309/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ab Initio Calculations of Spin Waves: A Review of Theoretical Approaches and Applications.\",\"authors\":\"Michael Neugum, Arno Schindlmayr\",\"doi\":\"10.3390/ma18184431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spin waves represent an important class of low-energy excitations in magnetic solids, which influence the thermodynamic properties and play a major role in technical applications, such as spintronics or magnetic data storage. Despite the enormous advances of ab initio simulations in materials science, quantitative calculations of spin-wave spectra still pose a significant challenge, because the collective nature of the spin dynamics requires an accurate treatment of the Coulomb interaction between the electrons. As a consequence, simple lattice models like the Heisenberg Hamiltonian are still widespread in practical investigations, but modern techniques like time-dependent density-functional theory or many-body perturbation theory also open a route to material-specific spin-wave calculations from first principles. Although both are in principle exact, actual implementations necessarily employ approximations for electronic exchange and correlation as well as additional numerical simplifications. In this review, we recapitulate the theoretical foundations of ab initio spin-wave calculations and analyze the common approximations that underlie present implementations. In addition, we survey the available results for spin-wave dispersions of various magnetic materials and compare the performance of different computational approaches. In this way, we provide an overview of the present state of the art and identify directions for further developments.</p>\",\"PeriodicalId\":18281,\"journal\":{\"name\":\"Materials\",\"volume\":\"18 18\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12471309/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/ma18184431\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma18184431","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

自旋波代表了磁性固体中一类重要的低能激发,它影响热力学性质,并在自旋电子学或磁性数据存储等技术应用中发挥重要作用。尽管材料科学在从头算模拟方面取得了巨大的进步,但自旋波谱的定量计算仍然面临着重大挑战,因为自旋动力学的集体性质需要对电子之间的库仑相互作用进行精确处理。因此,像海森堡哈密顿量这样的简单晶格模型在实际研究中仍然广泛应用,但像依赖时间的密度泛函理论或多体微扰理论这样的现代技术也为从第一原理出发计算特定材料的自旋波开辟了一条道路。虽然两者在原则上都是精确的,但实际实现必须采用电子交换和相关的近似值以及额外的数值简化。在这篇综述中,我们概述了从头算自旋波计算的理论基础,并分析了目前实现中常见的近似。此外,我们调查了各种磁性材料的自旋波色散的现有结果,并比较了不同计算方法的性能。通过这种方式,我们概述了目前的技术状况,并确定了进一步发展的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ab Initio Calculations of Spin Waves: A Review of Theoretical Approaches and Applications.

Ab Initio Calculations of Spin Waves: A Review of Theoretical Approaches and Applications.

Ab Initio Calculations of Spin Waves: A Review of Theoretical Approaches and Applications.

Ab Initio Calculations of Spin Waves: A Review of Theoretical Approaches and Applications.

Spin waves represent an important class of low-energy excitations in magnetic solids, which influence the thermodynamic properties and play a major role in technical applications, such as spintronics or magnetic data storage. Despite the enormous advances of ab initio simulations in materials science, quantitative calculations of spin-wave spectra still pose a significant challenge, because the collective nature of the spin dynamics requires an accurate treatment of the Coulomb interaction between the electrons. As a consequence, simple lattice models like the Heisenberg Hamiltonian are still widespread in practical investigations, but modern techniques like time-dependent density-functional theory or many-body perturbation theory also open a route to material-specific spin-wave calculations from first principles. Although both are in principle exact, actual implementations necessarily employ approximations for electronic exchange and correlation as well as additional numerical simplifications. In this review, we recapitulate the theoretical foundations of ab initio spin-wave calculations and analyze the common approximations that underlie present implementations. In addition, we survey the available results for spin-wave dispersions of various magnetic materials and compare the performance of different computational approaches. In this way, we provide an overview of the present state of the art and identify directions for further developments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信