{"title":"鹰嘴豆生产高蛋白豆腐的技术经济可行性:工艺设计及营养回收。","authors":"Ossama Dimassi, Lina Jaber, Imad Toufeili, Krystel Ouaijan, Shady Hamadeh","doi":"10.3390/foods14183206","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a comprehensive assessment of tofu production from whole chickpeas as a plant-based protein alternative for sustainable food systems and humanitarian use. A novel process comprising soaking, wet milling, starch sedimentation, thermal coagulation, and optional drying yielded tofu with 56.2% protein (dry basis). Byproducts, including starch and okara, were also recovered and characterized. Nutrient recovery analysis, relative to seed nutrient content, showed that tofu retained most of the protein (59.1%) and fat (43.2%), okara accounted for the majority of fiber (34.5%) with residual protein (13.5%) and fat (16.7%), while the starch fraction primarily contained net carbohydrates (21.6%). Techno-economic modeling showed that fresh tofu can be produced with minimal inputs and an estimated thermal requirement of 0.798 kWh/kg, while tofu powder required 4.109 kWh/kg; both represent idealized values assuming no heat loss or system inefficiency. Theoretical energy minima were estimated under idealized assumptions, and broader environmental and food security implications are discussed as perspectives. Unlike soy, chickpeas carry a low allergenic risk, which may enhance suitability for population-wide feeding interventions. Broader implications for sustainable development goals (hunger, health, climate action) and humanitarian applications are discussed as perspectives. Chickpea tofu may represent a viable shelf-stable protein platform for local and emergency food systems.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 18","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469117/pdf/","citationCount":"0","resultStr":"{\"title\":\"Techno-Economic Feasibility of Producing High-Protein Tofu from Chickpeas: Process Design and Nutrient Recovery.\",\"authors\":\"Ossama Dimassi, Lina Jaber, Imad Toufeili, Krystel Ouaijan, Shady Hamadeh\",\"doi\":\"10.3390/foods14183206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study presents a comprehensive assessment of tofu production from whole chickpeas as a plant-based protein alternative for sustainable food systems and humanitarian use. A novel process comprising soaking, wet milling, starch sedimentation, thermal coagulation, and optional drying yielded tofu with 56.2% protein (dry basis). Byproducts, including starch and okara, were also recovered and characterized. Nutrient recovery analysis, relative to seed nutrient content, showed that tofu retained most of the protein (59.1%) and fat (43.2%), okara accounted for the majority of fiber (34.5%) with residual protein (13.5%) and fat (16.7%), while the starch fraction primarily contained net carbohydrates (21.6%). Techno-economic modeling showed that fresh tofu can be produced with minimal inputs and an estimated thermal requirement of 0.798 kWh/kg, while tofu powder required 4.109 kWh/kg; both represent idealized values assuming no heat loss or system inefficiency. Theoretical energy minima were estimated under idealized assumptions, and broader environmental and food security implications are discussed as perspectives. Unlike soy, chickpeas carry a low allergenic risk, which may enhance suitability for population-wide feeding interventions. Broader implications for sustainable development goals (hunger, health, climate action) and humanitarian applications are discussed as perspectives. Chickpea tofu may represent a viable shelf-stable protein platform for local and emergency food systems.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":\"14 18\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469117/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods14183206\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14183206","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Techno-Economic Feasibility of Producing High-Protein Tofu from Chickpeas: Process Design and Nutrient Recovery.
This study presents a comprehensive assessment of tofu production from whole chickpeas as a plant-based protein alternative for sustainable food systems and humanitarian use. A novel process comprising soaking, wet milling, starch sedimentation, thermal coagulation, and optional drying yielded tofu with 56.2% protein (dry basis). Byproducts, including starch and okara, were also recovered and characterized. Nutrient recovery analysis, relative to seed nutrient content, showed that tofu retained most of the protein (59.1%) and fat (43.2%), okara accounted for the majority of fiber (34.5%) with residual protein (13.5%) and fat (16.7%), while the starch fraction primarily contained net carbohydrates (21.6%). Techno-economic modeling showed that fresh tofu can be produced with minimal inputs and an estimated thermal requirement of 0.798 kWh/kg, while tofu powder required 4.109 kWh/kg; both represent idealized values assuming no heat loss or system inefficiency. Theoretical energy minima were estimated under idealized assumptions, and broader environmental and food security implications are discussed as perspectives. Unlike soy, chickpeas carry a low allergenic risk, which may enhance suitability for population-wide feeding interventions. Broader implications for sustainable development goals (hunger, health, climate action) and humanitarian applications are discussed as perspectives. Chickpea tofu may represent a viable shelf-stable protein platform for local and emergency food systems.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds