跨气味场的熵减少。

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-08-28 DOI:10.3390/e27090909
Hugo Magalhães, Lino Marques
{"title":"跨气味场的熵减少。","authors":"Hugo Magalhães, Lino Marques","doi":"10.3390/e27090909","DOIUrl":null,"url":null,"abstract":"<p><p>Cognitive Odor Source Localization (OSL) strategies are reliable search strategies for turbulent environments, where chemical cues are sparse and intermittent. These methods estimate a probabilistic belief over the source location using Bayesian inference and guide the searching movement by evaluating expected entropy reduction at candidate new positions. By maximizing expected information gain, agents make informed decisions rather than simply reacting to sensor readings. However, computing entropy reductions is computationally expensive, making real-time implementation challenging for resource-constrained platforms. Interestingly, search trajectories produced by cognitive algorithms often resemble those of small insects, suggesting that informative movement patterns might be replicated using simpler, bio-inspired searching strategies. This work investigates that possibility by analysing spatial distribution of entropy reductions across the entire search area. Rather than focusing on searching algorithms and local decisions, the analysis maps information gain over the full environment, identifying consistent high-gain regions that may serve as navigational cues. Results show that these regions often emerge near the source and along plume borders and that expected entropy reduction is strongly influenced by prior belief shape and sensor observations. This global perspective enables identification of spatial patterns and high-gain regions that remain hidden when analysis is restricted to local neighborhoods. These insights enable synthesis of hybrid search strategies that preserve cognitive effectiveness while significantly reducing computational cost.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468182/pdf/","citationCount":"0","resultStr":"{\"title\":\"Entropy Reduction Across Odor Fields.\",\"authors\":\"Hugo Magalhães, Lino Marques\",\"doi\":\"10.3390/e27090909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cognitive Odor Source Localization (OSL) strategies are reliable search strategies for turbulent environments, where chemical cues are sparse and intermittent. These methods estimate a probabilistic belief over the source location using Bayesian inference and guide the searching movement by evaluating expected entropy reduction at candidate new positions. By maximizing expected information gain, agents make informed decisions rather than simply reacting to sensor readings. However, computing entropy reductions is computationally expensive, making real-time implementation challenging for resource-constrained platforms. Interestingly, search trajectories produced by cognitive algorithms often resemble those of small insects, suggesting that informative movement patterns might be replicated using simpler, bio-inspired searching strategies. This work investigates that possibility by analysing spatial distribution of entropy reductions across the entire search area. Rather than focusing on searching algorithms and local decisions, the analysis maps information gain over the full environment, identifying consistent high-gain regions that may serve as navigational cues. Results show that these regions often emerge near the source and along plume borders and that expected entropy reduction is strongly influenced by prior belief shape and sensor observations. This global perspective enables identification of spatial patterns and high-gain regions that remain hidden when analysis is restricted to local neighborhoods. These insights enable synthesis of hybrid search strategies that preserve cognitive effectiveness while significantly reducing computational cost.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27090909\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090909","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

认知气味源定位(OSL)策略是湍流环境中可靠的搜索策略,其中化学线索是稀疏和间歇性的。这些方法使用贝叶斯推理估计源位置的概率信念,并通过评估候选新位置的期望熵减少来指导搜索运动。通过最大化预期信息增益,代理可以做出明智的决定,而不是简单地对传感器读数做出反应。然而,计算熵的减少在计算上是昂贵的,使得实时实现对资源受限的平台具有挑战性。有趣的是,由认知算法产生的搜索轨迹通常类似于小昆虫的轨迹,这表明信息运动模式可能通过更简单的、受生物启发的搜索策略来复制。这项工作通过分析整个搜索区域的熵减少的空间分布来调查这种可能性。该分析不是专注于搜索算法和局部决策,而是将信息增益映射到整个环境中,识别出可能作为导航线索的一致高增益区域。结果表明,这些区域通常出现在源附近和羽流边界,预期熵降受先验信念形状和传感器观测的强烈影响。这种全球视角能够识别空间模式和高增益区域,当分析仅限于当地社区时,这些区域仍然隐藏。这些见解使混合搜索策略的合成能够在保持认知有效性的同时显著降低计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy Reduction Across Odor Fields.

Cognitive Odor Source Localization (OSL) strategies are reliable search strategies for turbulent environments, where chemical cues are sparse and intermittent. These methods estimate a probabilistic belief over the source location using Bayesian inference and guide the searching movement by evaluating expected entropy reduction at candidate new positions. By maximizing expected information gain, agents make informed decisions rather than simply reacting to sensor readings. However, computing entropy reductions is computationally expensive, making real-time implementation challenging for resource-constrained platforms. Interestingly, search trajectories produced by cognitive algorithms often resemble those of small insects, suggesting that informative movement patterns might be replicated using simpler, bio-inspired searching strategies. This work investigates that possibility by analysing spatial distribution of entropy reductions across the entire search area. Rather than focusing on searching algorithms and local decisions, the analysis maps information gain over the full environment, identifying consistent high-gain regions that may serve as navigational cues. Results show that these regions often emerge near the source and along plume borders and that expected entropy reduction is strongly influenced by prior belief shape and sensor observations. This global perspective enables identification of spatial patterns and high-gain regions that remain hidden when analysis is restricted to local neighborhoods. These insights enable synthesis of hybrid search strategies that preserve cognitive effectiveness while significantly reducing computational cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信