基于VMD、融合熵和随机森林特征提取改进LSTM的行星齿轮箱故障诊断。

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-09-14 DOI:10.3390/e27090956
Xin Xia, Haoyu Sun, Aiguo Wang
{"title":"基于VMD、融合熵和随机森林特征提取改进LSTM的行星齿轮箱故障诊断。","authors":"Xin Xia, Haoyu Sun, Aiguo Wang","doi":"10.3390/e27090956","DOIUrl":null,"url":null,"abstract":"<p><p>Extracting effective fault features from the complex vibration signals of planetary gearboxes is the key to conducting efficient fault diagnosis, and it involves signal processing, feature extraction, and feature selection. In this paper, a novel feature extraction method is proposed using variational mode decomposition (VMD), fusion entropy, and random forest (RF). Firstly, VMD is employed to process the nonlinear and non-stationary signals of planetary gearboxes, which can effectively address the issues of signal modulation and mode mixing. Additionally, a fusion entropy that incorporates various refined composite multi-scale entropies is proposed; it fully utilizes the signal characteristics reflected by various entropies as features for fault diagnosis. Then, RF is adopted to calculate the importance of each feature, and appropriate features are selected to form a fault diagnosis vector, aiming to solve the problems of feature redundancy and interference in fusion entropy. Finally, long short-term memory (LSTM) is used for fault classification. The experimental results demonstrate that the proposed fusion entropy achieves higher accuracy compared with a single entropy value. The RF-based feature selection can also reduce interference and improve diagnostic efficiency. The proposed fault diagnosis method exhibits high fault diagnosis accuracy under different rotational speeds and environmental noise conditions.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468993/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fault Diagnosis of Planetary Gearboxes Based on LSTM Improved via Feature Extraction Using VMD, Fusion Entropy, and Random Forest.\",\"authors\":\"Xin Xia, Haoyu Sun, Aiguo Wang\",\"doi\":\"10.3390/e27090956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracting effective fault features from the complex vibration signals of planetary gearboxes is the key to conducting efficient fault diagnosis, and it involves signal processing, feature extraction, and feature selection. In this paper, a novel feature extraction method is proposed using variational mode decomposition (VMD), fusion entropy, and random forest (RF). Firstly, VMD is employed to process the nonlinear and non-stationary signals of planetary gearboxes, which can effectively address the issues of signal modulation and mode mixing. Additionally, a fusion entropy that incorporates various refined composite multi-scale entropies is proposed; it fully utilizes the signal characteristics reflected by various entropies as features for fault diagnosis. Then, RF is adopted to calculate the importance of each feature, and appropriate features are selected to form a fault diagnosis vector, aiming to solve the problems of feature redundancy and interference in fusion entropy. Finally, long short-term memory (LSTM) is used for fault classification. The experimental results demonstrate that the proposed fusion entropy achieves higher accuracy compared with a single entropy value. The RF-based feature selection can also reduce interference and improve diagnostic efficiency. The proposed fault diagnosis method exhibits high fault diagnosis accuracy under different rotational speeds and environmental noise conditions.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468993/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27090956\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090956","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从行星齿轮箱复杂的振动信号中提取有效的故障特征是进行有效故障诊断的关键,它涉及到信号处理、特征提取和特征选择。本文提出了一种基于变分模态分解(VMD)、融合熵和随机森林(RF)的特征提取方法。首先,利用VMD对行星齿轮箱的非线性非平稳信号进行处理,有效地解决了信号调制和模态混叠问题;此外,还提出了一种融合各种精细复合多尺度熵的融合熵;它充分利用各种熵所反映的信号特征作为故障诊断的特征。然后,采用射频法计算各特征的重要度,选择合适的特征组成故障诊断向量,解决融合熵中的特征冗余和干扰问题。最后,利用长短期记忆(LSTM)进行故障分类。实验结果表明,与单一熵值相比,该融合熵值具有更高的精度。基于射频的特征选择也可以减少干扰,提高诊断效率。该方法在不同转速和环境噪声条件下均具有较高的故障诊断精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Diagnosis of Planetary Gearboxes Based on LSTM Improved via Feature Extraction Using VMD, Fusion Entropy, and Random Forest.

Extracting effective fault features from the complex vibration signals of planetary gearboxes is the key to conducting efficient fault diagnosis, and it involves signal processing, feature extraction, and feature selection. In this paper, a novel feature extraction method is proposed using variational mode decomposition (VMD), fusion entropy, and random forest (RF). Firstly, VMD is employed to process the nonlinear and non-stationary signals of planetary gearboxes, which can effectively address the issues of signal modulation and mode mixing. Additionally, a fusion entropy that incorporates various refined composite multi-scale entropies is proposed; it fully utilizes the signal characteristics reflected by various entropies as features for fault diagnosis. Then, RF is adopted to calculate the importance of each feature, and appropriate features are selected to form a fault diagnosis vector, aiming to solve the problems of feature redundancy and interference in fusion entropy. Finally, long short-term memory (LSTM) is used for fault classification. The experimental results demonstrate that the proposed fusion entropy achieves higher accuracy compared with a single entropy value. The RF-based feature selection can also reduce interference and improve diagnostic efficiency. The proposed fault diagnosis method exhibits high fault diagnosis accuracy under different rotational speeds and environmental noise conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信