基于熵融合增强辛几何模态分解的混合电能质量扰动识别。

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-08-30 DOI:10.3390/e27090920
Chencheng He, Wenbo Wang, Xuezhuang E, Hao Yuan, Yuyi Lu
{"title":"基于熵融合增强辛几何模态分解的混合电能质量扰动识别。","authors":"Chencheng He, Wenbo Wang, Xuezhuang E, Hao Yuan, Yuyi Lu","doi":"10.3390/e27090920","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical networks face operational challenges from power quality-affecting disturbances. Since disturbance signatures directly affect classifier performance, optimized feature selection becomes critical for accurate power quality assessment. The pursuit of robust feature extraction inevitably constrains the dimensionality of the discriminative feature set, but the complexity of the recognition model will be increased and the recognition speed will be reduced if the feature vector dimension is too high. Building upon the aforementioned requirements, in this paper, we propose a feature extraction framework that combines improved symplectic geometric mode decomposition, refined generalized multiscale quantum entropy, and refined generalized multiscale reverse dispersion entropy. Firstly, based on the intrinsic properties of power quality disturbance (PQD) signals, the embedding dimension of symplectic geometric mode decomposition and the adaptive mode component screening method are improved, and the PQD signal undergoes tri-band decomposition via improved symplectic geometric mode decomposition (ISGMD), yielding distinct high-frequency, medium-frequency, and low-frequency components. Secondly, utilizing the enhanced symplectic geometric mode decomposition as a foundation, the perturbation features are extracted by the combination of refined generalized multiscale quantum entropy and refined generalized multiscale reverse dispersion entropy to construct high-precision and low-dimensional feature vectors. Finally, a double-layer composite power quality disturbance model is constructed by a deep extreme learning machine algorithm to identify power quality disturbance signals. After analysis and comparison, the proposed method is found to be effective even in a strong noise environment with a single interference, and the average recognition accuracy across different noise environments is 97.3%. Under the complex conditions involving multiple types of mixed perturbations, the average recognition accuracy is maintained above 96%. Compared with the existing CNN + LSTM method, the recognition accuracy of the proposed method is improved by 3.7%. In addition, its recognition accuracy in scenarios with small data samples is significantly better than that of traditional methods, such as single CNN models and LSTM models. The experimental results show that the proposed strategy can accurately classify and identify various power quality interferences and that it is better than traditional methods in terms of classification accuracy and robustness. The experimental results of the simulation and measured data show that the combined feature extraction methodology reliably extracts discriminative feature vectors from PQD. The double-layer combined classification model can further enhance the model's recognition capabilities. This method has high accuracy and certain noise resistance. In the 30 dB white noise environment, the average classification accuracy of the model is 99.10% for the simulation database containing 63 PQD types. Meanwhile, for the test data based on a hardware platform, the average accuracy is 99.03%, and the approach's dependability is further evidenced by rigorous validation experiments.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468268/pdf/","citationCount":"0","resultStr":"{\"title\":\"Entropy-Fused Enhanced Symplectic Geometric Mode Decomposition for Hybrid Power Quality Disturbance Recognition.\",\"authors\":\"Chencheng He, Wenbo Wang, Xuezhuang E, Hao Yuan, Yuyi Lu\",\"doi\":\"10.3390/e27090920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electrical networks face operational challenges from power quality-affecting disturbances. Since disturbance signatures directly affect classifier performance, optimized feature selection becomes critical for accurate power quality assessment. The pursuit of robust feature extraction inevitably constrains the dimensionality of the discriminative feature set, but the complexity of the recognition model will be increased and the recognition speed will be reduced if the feature vector dimension is too high. Building upon the aforementioned requirements, in this paper, we propose a feature extraction framework that combines improved symplectic geometric mode decomposition, refined generalized multiscale quantum entropy, and refined generalized multiscale reverse dispersion entropy. Firstly, based on the intrinsic properties of power quality disturbance (PQD) signals, the embedding dimension of symplectic geometric mode decomposition and the adaptive mode component screening method are improved, and the PQD signal undergoes tri-band decomposition via improved symplectic geometric mode decomposition (ISGMD), yielding distinct high-frequency, medium-frequency, and low-frequency components. Secondly, utilizing the enhanced symplectic geometric mode decomposition as a foundation, the perturbation features are extracted by the combination of refined generalized multiscale quantum entropy and refined generalized multiscale reverse dispersion entropy to construct high-precision and low-dimensional feature vectors. Finally, a double-layer composite power quality disturbance model is constructed by a deep extreme learning machine algorithm to identify power quality disturbance signals. After analysis and comparison, the proposed method is found to be effective even in a strong noise environment with a single interference, and the average recognition accuracy across different noise environments is 97.3%. Under the complex conditions involving multiple types of mixed perturbations, the average recognition accuracy is maintained above 96%. Compared with the existing CNN + LSTM method, the recognition accuracy of the proposed method is improved by 3.7%. In addition, its recognition accuracy in scenarios with small data samples is significantly better than that of traditional methods, such as single CNN models and LSTM models. The experimental results show that the proposed strategy can accurately classify and identify various power quality interferences and that it is better than traditional methods in terms of classification accuracy and robustness. The experimental results of the simulation and measured data show that the combined feature extraction methodology reliably extracts discriminative feature vectors from PQD. The double-layer combined classification model can further enhance the model's recognition capabilities. This method has high accuracy and certain noise resistance. In the 30 dB white noise environment, the average classification accuracy of the model is 99.10% for the simulation database containing 63 PQD types. Meanwhile, for the test data based on a hardware platform, the average accuracy is 99.03%, and the approach's dependability is further evidenced by rigorous validation experiments.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468268/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27090920\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090920","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电网面临着影响电能质量的干扰带来的运营挑战。由于干扰特征直接影响分类器的性能,因此优化特征选择对于准确评估电能质量至关重要。对鲁棒性特征提取的追求不可避免地限制了判别特征集的维数,但如果特征向量维数过高,则会增加识别模型的复杂性,降低识别速度。基于上述要求,本文提出了一种结合改进辛几何模态分解、改进广义多尺度量子熵和改进广义多尺度逆色散熵的特征提取框架。首先,基于电能质量干扰(PQD)信号的固有特性,改进辛几何模态分解的嵌入维数和自适应模态分量筛选方法,并通过改进的辛几何模态分解(ISGMD)对PQD信号进行三波段分解,得到不同的高频、中频和低频分量。其次,以增强的辛几何模态分解为基础,结合精细广义多尺度量子熵和精细广义多尺度逆色散熵提取扰动特征,构建高精度、低维特征向量;最后,利用深度极值学习机算法构建双层复合电能质量扰动模型,对电能质量扰动信号进行识别。通过分析和比较,发现该方法即使在单一干扰的强噪声环境下也是有效的,在不同噪声环境下的平均识别准确率为97.3%。在多种混合扰动的复杂条件下,平均识别准确率保持在96%以上。与现有的CNN + LSTM方法相比,本文方法的识别准确率提高了3.7%。此外,在小数据样本场景下,其识别精度明显优于传统方法,如单一CNN模型和LSTM模型。实验结果表明,所提策略能准确分类识别各种电能质量干扰,在分类精度和鲁棒性方面均优于传统方法。仿真和实测数据的实验结果表明,该组合特征提取方法能够可靠地从PQD中提取出判别特征向量。双层组合分类模型可以进一步增强模型的识别能力。该方法具有较高的精度和一定的抗噪性。在30 dB白噪声环境下,对于包含63种PQD类型的仿真数据库,该模型的平均分类准确率为99.10%。同时,对于基于硬件平台的测试数据,平均准确率达到99.03%,通过严格的验证实验进一步证明了该方法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Entropy-Fused Enhanced Symplectic Geometric Mode Decomposition for Hybrid Power Quality Disturbance Recognition.

Electrical networks face operational challenges from power quality-affecting disturbances. Since disturbance signatures directly affect classifier performance, optimized feature selection becomes critical for accurate power quality assessment. The pursuit of robust feature extraction inevitably constrains the dimensionality of the discriminative feature set, but the complexity of the recognition model will be increased and the recognition speed will be reduced if the feature vector dimension is too high. Building upon the aforementioned requirements, in this paper, we propose a feature extraction framework that combines improved symplectic geometric mode decomposition, refined generalized multiscale quantum entropy, and refined generalized multiscale reverse dispersion entropy. Firstly, based on the intrinsic properties of power quality disturbance (PQD) signals, the embedding dimension of symplectic geometric mode decomposition and the adaptive mode component screening method are improved, and the PQD signal undergoes tri-band decomposition via improved symplectic geometric mode decomposition (ISGMD), yielding distinct high-frequency, medium-frequency, and low-frequency components. Secondly, utilizing the enhanced symplectic geometric mode decomposition as a foundation, the perturbation features are extracted by the combination of refined generalized multiscale quantum entropy and refined generalized multiscale reverse dispersion entropy to construct high-precision and low-dimensional feature vectors. Finally, a double-layer composite power quality disturbance model is constructed by a deep extreme learning machine algorithm to identify power quality disturbance signals. After analysis and comparison, the proposed method is found to be effective even in a strong noise environment with a single interference, and the average recognition accuracy across different noise environments is 97.3%. Under the complex conditions involving multiple types of mixed perturbations, the average recognition accuracy is maintained above 96%. Compared with the existing CNN + LSTM method, the recognition accuracy of the proposed method is improved by 3.7%. In addition, its recognition accuracy in scenarios with small data samples is significantly better than that of traditional methods, such as single CNN models and LSTM models. The experimental results show that the proposed strategy can accurately classify and identify various power quality interferences and that it is better than traditional methods in terms of classification accuracy and robustness. The experimental results of the simulation and measured data show that the combined feature extraction methodology reliably extracts discriminative feature vectors from PQD. The double-layer combined classification model can further enhance the model's recognition capabilities. This method has high accuracy and certain noise resistance. In the 30 dB white noise environment, the average classification accuracy of the model is 99.10% for the simulation database containing 63 PQD types. Meanwhile, for the test data based on a hardware platform, the average accuracy is 99.03%, and the approach's dependability is further evidenced by rigorous validation experiments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信