Martha Mantiniotou, Vassilis Athanasiadis, Dimitrios Kalompatsios, Eleni Bozinou, George Ntourtoglou, Vassilis G Dourtoglou, Stavros I Lalas
{"title":"常温等离子体作为绿色预处理策略强化辣木叶的植物化学提取。","authors":"Martha Mantiniotou, Vassilis Athanasiadis, Dimitrios Kalompatsios, Eleni Bozinou, George Ntourtoglou, Vassilis G Dourtoglou, Stavros I Lalas","doi":"10.3390/foods14183233","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past few years, naturally sourced bioactive molecules have drawn increased attention for their antioxidant capacity and wide-ranging health effects. At the same time, interest in eco-friendly extraction approaches has risen sharply. Atmospheric Room Temperature Plasma (ARTP), a novel non-thermal pretreatment method, has emerged as a promising green technology due to its minimal environmental impact, cost-effectiveness, and superior extraction efficiency compared to conventional methods. In this study, ARTP pretreatment-optimized across variables such as treatment distance, substrate thickness, power, nitrogen flow, and duration-was combined with ultrasonic-assisted extraction to enhance the recovery of bioactive compounds from <i>Moringa oleifera</i> leaves. Both techniques were optimized using Response Surface Methodology (RSM). Under optimal conditions, the extract yielded a total polyphenol content of approximately 40 mg gallic acid equivalents per gram of dry weight. Antioxidant activity, assessed via ferric-reducing antioxidant power (FRAP) and DPPH radical scavenging assays, reached ~280 and ~113 μmol ascorbic acid equivalents per gram dry weight, respectively, and the ascorbic acid content was ~5.3 mg/g. These findings highlight the potential of ARTP as an effective and sustainable pretreatment method for producing high-value phytochemical extracts, with promising applications in the food, pharmaceutical, and cosmetic industries.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 18","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469745/pdf/","citationCount":"0","resultStr":"{\"title\":\"Atmospheric Room Temperature Plasma as a Green Pretreatment Strategy for Enhanced Phytochemical Extraction from <i>Moringa oleifera</i> Leaves.\",\"authors\":\"Martha Mantiniotou, Vassilis Athanasiadis, Dimitrios Kalompatsios, Eleni Bozinou, George Ntourtoglou, Vassilis G Dourtoglou, Stavros I Lalas\",\"doi\":\"10.3390/foods14183233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past few years, naturally sourced bioactive molecules have drawn increased attention for their antioxidant capacity and wide-ranging health effects. At the same time, interest in eco-friendly extraction approaches has risen sharply. Atmospheric Room Temperature Plasma (ARTP), a novel non-thermal pretreatment method, has emerged as a promising green technology due to its minimal environmental impact, cost-effectiveness, and superior extraction efficiency compared to conventional methods. In this study, ARTP pretreatment-optimized across variables such as treatment distance, substrate thickness, power, nitrogen flow, and duration-was combined with ultrasonic-assisted extraction to enhance the recovery of bioactive compounds from <i>Moringa oleifera</i> leaves. Both techniques were optimized using Response Surface Methodology (RSM). Under optimal conditions, the extract yielded a total polyphenol content of approximately 40 mg gallic acid equivalents per gram of dry weight. Antioxidant activity, assessed via ferric-reducing antioxidant power (FRAP) and DPPH radical scavenging assays, reached ~280 and ~113 μmol ascorbic acid equivalents per gram dry weight, respectively, and the ascorbic acid content was ~5.3 mg/g. These findings highlight the potential of ARTP as an effective and sustainable pretreatment method for producing high-value phytochemical extracts, with promising applications in the food, pharmaceutical, and cosmetic industries.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":\"14 18\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469745/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods14183233\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14183233","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Atmospheric Room Temperature Plasma as a Green Pretreatment Strategy for Enhanced Phytochemical Extraction from Moringa oleifera Leaves.
Over the past few years, naturally sourced bioactive molecules have drawn increased attention for their antioxidant capacity and wide-ranging health effects. At the same time, interest in eco-friendly extraction approaches has risen sharply. Atmospheric Room Temperature Plasma (ARTP), a novel non-thermal pretreatment method, has emerged as a promising green technology due to its minimal environmental impact, cost-effectiveness, and superior extraction efficiency compared to conventional methods. In this study, ARTP pretreatment-optimized across variables such as treatment distance, substrate thickness, power, nitrogen flow, and duration-was combined with ultrasonic-assisted extraction to enhance the recovery of bioactive compounds from Moringa oleifera leaves. Both techniques were optimized using Response Surface Methodology (RSM). Under optimal conditions, the extract yielded a total polyphenol content of approximately 40 mg gallic acid equivalents per gram of dry weight. Antioxidant activity, assessed via ferric-reducing antioxidant power (FRAP) and DPPH radical scavenging assays, reached ~280 and ~113 μmol ascorbic acid equivalents per gram dry weight, respectively, and the ascorbic acid content was ~5.3 mg/g. These findings highlight the potential of ARTP as an effective and sustainable pretreatment method for producing high-value phytochemical extracts, with promising applications in the food, pharmaceutical, and cosmetic industries.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds