{"title":"基于多尺度光谱空间序列学习的RGB高光谱图像重建。","authors":"Wenjing Chen, Lang Liu, Rong Gao","doi":"10.3390/e27090959","DOIUrl":null,"url":null,"abstract":"<p><p>With rapid advancements in transformers, the reconstruction of hyperspectral images from RGB images, also known as spectral super-resolution (SSR), has made significant breakthroughs. However, existing transformer-based methods often struggle to balance computational efficiency with long-range receptive fields. Recently, Mamba has demonstrated linear complexity in modeling long-range dependencies and shown broad applicability in vision tasks. This paper proposes a multi-scale spectral-spatial sequence learning method, named MSS-Mamba, for reconstructing hyperspectral images from RGB images. First, we introduce a continuous spectral-spatial scan (CS3) mechanism to improve cross-dimensional feature extraction of the foundational Mamba model. Second, we propose a sequence tokenization strategy that generates multi-scale-aware sequences to overcome Mamba's limitations in hierarchically learning multi-scale information. Specifically, we design the multi-scale information fusion (MIF) module, which tokenizes input sequences before feeding them into Mamba. The MIF employs a dual-branch architecture to process global and local information separately, dynamically fusing features through an adaptive router that generates weighting coefficients. This produces feature maps that contain both global contextual information and local details, ultimately reconstructing a high-fidelity hyperspectral image. Experimental results on the ARAD_1k, CAVE and grss_dfc_2018 dataset demonstrate the performance of MSS-Mamba.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468563/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reconstructing Hyperspectral Images from RGB Images by Multi-Scale Spectral-Spatial Sequence Learning.\",\"authors\":\"Wenjing Chen, Lang Liu, Rong Gao\",\"doi\":\"10.3390/e27090959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With rapid advancements in transformers, the reconstruction of hyperspectral images from RGB images, also known as spectral super-resolution (SSR), has made significant breakthroughs. However, existing transformer-based methods often struggle to balance computational efficiency with long-range receptive fields. Recently, Mamba has demonstrated linear complexity in modeling long-range dependencies and shown broad applicability in vision tasks. This paper proposes a multi-scale spectral-spatial sequence learning method, named MSS-Mamba, for reconstructing hyperspectral images from RGB images. First, we introduce a continuous spectral-spatial scan (CS3) mechanism to improve cross-dimensional feature extraction of the foundational Mamba model. Second, we propose a sequence tokenization strategy that generates multi-scale-aware sequences to overcome Mamba's limitations in hierarchically learning multi-scale information. Specifically, we design the multi-scale information fusion (MIF) module, which tokenizes input sequences before feeding them into Mamba. The MIF employs a dual-branch architecture to process global and local information separately, dynamically fusing features through an adaptive router that generates weighting coefficients. This produces feature maps that contain both global contextual information and local details, ultimately reconstructing a high-fidelity hyperspectral image. Experimental results on the ARAD_1k, CAVE and grss_dfc_2018 dataset demonstrate the performance of MSS-Mamba.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468563/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27090959\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090959","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Reconstructing Hyperspectral Images from RGB Images by Multi-Scale Spectral-Spatial Sequence Learning.
With rapid advancements in transformers, the reconstruction of hyperspectral images from RGB images, also known as spectral super-resolution (SSR), has made significant breakthroughs. However, existing transformer-based methods often struggle to balance computational efficiency with long-range receptive fields. Recently, Mamba has demonstrated linear complexity in modeling long-range dependencies and shown broad applicability in vision tasks. This paper proposes a multi-scale spectral-spatial sequence learning method, named MSS-Mamba, for reconstructing hyperspectral images from RGB images. First, we introduce a continuous spectral-spatial scan (CS3) mechanism to improve cross-dimensional feature extraction of the foundational Mamba model. Second, we propose a sequence tokenization strategy that generates multi-scale-aware sequences to overcome Mamba's limitations in hierarchically learning multi-scale information. Specifically, we design the multi-scale information fusion (MIF) module, which tokenizes input sequences before feeding them into Mamba. The MIF employs a dual-branch architecture to process global and local information separately, dynamically fusing features through an adaptive router that generates weighting coefficients. This produces feature maps that contain both global contextual information and local details, ultimately reconstructing a high-fidelity hyperspectral image. Experimental results on the ARAD_1k, CAVE and grss_dfc_2018 dataset demonstrate the performance of MSS-Mamba.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.