{"title":"语义熵驱动的关键词分析与搜索引擎多阶段逻辑组合召回。","authors":"Haihua Lu, Liang Yu, Yantao He, Liwei Tian","doi":"10.3390/e27090961","DOIUrl":null,"url":null,"abstract":"<p><p>Information retrieval serves as a critical methodology for accurately and efficiently obtaining the required information from massive amounts of data. In this paper, we propose an information retrieval framework (SE-MSLC) that utilizes information theory to improve the retrieval effectiveness of inverted index retrieval, thus achieving higher-quality retrieval results in intelligent vertical domain search engines. First, we propose a semantic entropy-driven keyword importance analysis method (SE-KIA) in the query understanding module. This method combines search query logs, the corpus of the search engine, and the theory of semantic entropy, enabling the search engine to dynamically adjust the weights of query keywords, thereby improving its ability to recognize user intent. Then, we propose a hybrid recall strategy that combines a multi-stage strategy and a logical combination strategy (HRS-MSLC) in the recall module. It separately recalls the keywords obtained from the multi-granularity word segmentation of the query in the form of multi-queue recall and simultaneously considers the \"AND\" and \"OR\" logical relationships between the keywords. By systematically managing retrieval uncertainty and giving priority to the keywords with high information content, it achieves the best balance between the quantity of the retrieval results and the relevance of the retrieval results to the query. Finally, we experimentally evaluate our methods using the Hit Rate@K and case analysis. Our results demonstrate that the proposed method improves the Hit Rate@1 by 7.3% and the Hit Rate@3 by 6.6% while effectively solving the bad cases in our vertical domain search engine.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468705/pdf/","citationCount":"0","resultStr":"{\"title\":\"SE-MSLC: Semantic Entropy-Driven Keyword Analysis and Multi-Stage Logical Combination Recall for Search Engine.\",\"authors\":\"Haihua Lu, Liang Yu, Yantao He, Liwei Tian\",\"doi\":\"10.3390/e27090961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Information retrieval serves as a critical methodology for accurately and efficiently obtaining the required information from massive amounts of data. In this paper, we propose an information retrieval framework (SE-MSLC) that utilizes information theory to improve the retrieval effectiveness of inverted index retrieval, thus achieving higher-quality retrieval results in intelligent vertical domain search engines. First, we propose a semantic entropy-driven keyword importance analysis method (SE-KIA) in the query understanding module. This method combines search query logs, the corpus of the search engine, and the theory of semantic entropy, enabling the search engine to dynamically adjust the weights of query keywords, thereby improving its ability to recognize user intent. Then, we propose a hybrid recall strategy that combines a multi-stage strategy and a logical combination strategy (HRS-MSLC) in the recall module. It separately recalls the keywords obtained from the multi-granularity word segmentation of the query in the form of multi-queue recall and simultaneously considers the \\\"AND\\\" and \\\"OR\\\" logical relationships between the keywords. By systematically managing retrieval uncertainty and giving priority to the keywords with high information content, it achieves the best balance between the quantity of the retrieval results and the relevance of the retrieval results to the query. Finally, we experimentally evaluate our methods using the Hit Rate@K and case analysis. Our results demonstrate that the proposed method improves the Hit Rate@1 by 7.3% and the Hit Rate@3 by 6.6% while effectively solving the bad cases in our vertical domain search engine.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468705/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27090961\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090961","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
SE-MSLC: Semantic Entropy-Driven Keyword Analysis and Multi-Stage Logical Combination Recall for Search Engine.
Information retrieval serves as a critical methodology for accurately and efficiently obtaining the required information from massive amounts of data. In this paper, we propose an information retrieval framework (SE-MSLC) that utilizes information theory to improve the retrieval effectiveness of inverted index retrieval, thus achieving higher-quality retrieval results in intelligent vertical domain search engines. First, we propose a semantic entropy-driven keyword importance analysis method (SE-KIA) in the query understanding module. This method combines search query logs, the corpus of the search engine, and the theory of semantic entropy, enabling the search engine to dynamically adjust the weights of query keywords, thereby improving its ability to recognize user intent. Then, we propose a hybrid recall strategy that combines a multi-stage strategy and a logical combination strategy (HRS-MSLC) in the recall module. It separately recalls the keywords obtained from the multi-granularity word segmentation of the query in the form of multi-queue recall and simultaneously considers the "AND" and "OR" logical relationships between the keywords. By systematically managing retrieval uncertainty and giving priority to the keywords with high information content, it achieves the best balance between the quantity of the retrieval results and the relevance of the retrieval results to the query. Finally, we experimentally evaluate our methods using the Hit Rate@K and case analysis. Our results demonstrate that the proposed method improves the Hit Rate@1 by 7.3% and the Hit Rate@3 by 6.6% while effectively solving the bad cases in our vertical domain search engine.
期刊介绍:
Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.