Hong Zhang, Mengjie Su, Yu Zhang, Qiuxia Feng, Yuntao Liu, Zhen Zeng, Qing Zhang, Zhengfeng Fang, Shanshan Li, Hong Chen
{"title":"针对小肠吸收生物活性物质的纳米递送系统的现状和未来展望。","authors":"Hong Zhang, Mengjie Su, Yu Zhang, Qiuxia Feng, Yuntao Liu, Zhen Zeng, Qing Zhang, Zhengfeng Fang, Shanshan Li, Hong Chen","doi":"10.3390/foods14183234","DOIUrl":null,"url":null,"abstract":"<p><p>The undesirable properties of bioactive substances (such as poor solubility and low stability) and various barriers in the gastrointestinal tract (gastric acid, digestive enzymes, mucus and intestinal epithelial cells) hinder their absorption and utilisation by the human body. Nanodelivery systems have been proven to effectively address the above problems, particularly targeted nanodelivery systems, which have more advantages in improving the bioavailability of bioactive substances. However, many studies have not included all barriers. Furthermore, given that the small intestine is the main site for the absorption of bioactive substances in the human body, this review primarily discusses targeted nanodelivery systems designed for the gastrointestinal barrier and summarises how to construct a nanodelivery system that can resist the adverse effects of the gastrointestinal tract and target the small intestine for the absorption of bioactive substances. This paper proposes that the ideal system is the active targeted nanodelivery system that targets enterocytes and its future development trend is discussed. This review aims to provide new insights for the rational design of nanodelivery platforms that efficiently target the small intestine and promote the absorption of bioactive substances, as well as promote the development of fields such as personalised nutrition and nutritional intervention.</p>","PeriodicalId":12386,"journal":{"name":"Foods","volume":"14 18","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469417/pdf/","citationCount":"0","resultStr":"{\"title\":\"Current Status and Future Prospects on Nanodelivery Systems Targeting the Small Intestine for Absorption of Bioactive Substances.\",\"authors\":\"Hong Zhang, Mengjie Su, Yu Zhang, Qiuxia Feng, Yuntao Liu, Zhen Zeng, Qing Zhang, Zhengfeng Fang, Shanshan Li, Hong Chen\",\"doi\":\"10.3390/foods14183234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The undesirable properties of bioactive substances (such as poor solubility and low stability) and various barriers in the gastrointestinal tract (gastric acid, digestive enzymes, mucus and intestinal epithelial cells) hinder their absorption and utilisation by the human body. Nanodelivery systems have been proven to effectively address the above problems, particularly targeted nanodelivery systems, which have more advantages in improving the bioavailability of bioactive substances. However, many studies have not included all barriers. Furthermore, given that the small intestine is the main site for the absorption of bioactive substances in the human body, this review primarily discusses targeted nanodelivery systems designed for the gastrointestinal barrier and summarises how to construct a nanodelivery system that can resist the adverse effects of the gastrointestinal tract and target the small intestine for the absorption of bioactive substances. This paper proposes that the ideal system is the active targeted nanodelivery system that targets enterocytes and its future development trend is discussed. This review aims to provide new insights for the rational design of nanodelivery platforms that efficiently target the small intestine and promote the absorption of bioactive substances, as well as promote the development of fields such as personalised nutrition and nutritional intervention.</p>\",\"PeriodicalId\":12386,\"journal\":{\"name\":\"Foods\",\"volume\":\"14 18\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12469417/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foods\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/foods14183234\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foods","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/foods14183234","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Current Status and Future Prospects on Nanodelivery Systems Targeting the Small Intestine for Absorption of Bioactive Substances.
The undesirable properties of bioactive substances (such as poor solubility and low stability) and various barriers in the gastrointestinal tract (gastric acid, digestive enzymes, mucus and intestinal epithelial cells) hinder their absorption and utilisation by the human body. Nanodelivery systems have been proven to effectively address the above problems, particularly targeted nanodelivery systems, which have more advantages in improving the bioavailability of bioactive substances. However, many studies have not included all barriers. Furthermore, given that the small intestine is the main site for the absorption of bioactive substances in the human body, this review primarily discusses targeted nanodelivery systems designed for the gastrointestinal barrier and summarises how to construct a nanodelivery system that can resist the adverse effects of the gastrointestinal tract and target the small intestine for the absorption of bioactive substances. This paper proposes that the ideal system is the active targeted nanodelivery system that targets enterocytes and its future development trend is discussed. This review aims to provide new insights for the rational design of nanodelivery platforms that efficiently target the small intestine and promote the absorption of bioactive substances, as well as promote the development of fields such as personalised nutrition and nutritional intervention.
期刊介绍:
Foods (ISSN 2304-8158) is an international, peer-reviewed scientific open access journal which provides an advanced forum for studies related to all aspects of food research. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists, researchers, and other food professionals to publish their experimental and theoretical results in as much detail as possible or share their knowledge with as much readers unlimitedly as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
manuscripts regarding research proposals and research ideas will be particularly welcomed
electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material
we also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds