结构复杂性作为系统演化的方向性特征:超越熵。

IF 2 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Entropy Pub Date : 2025-09-03 DOI:10.3390/e27090925
Donglu Shi
{"title":"结构复杂性作为系统演化的方向性特征:超越熵。","authors":"Donglu Shi","doi":"10.3390/e27090925","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a universal framework for understanding system evolution based on structural complexity, offering a directional signature that applies across physical, chemical, and biological domains. Unlike entropy, which is constrained by its definition in closed, equilibrium systems, we introduce Kolmogorov Complexity (KC) and Fractal Dimension (FD) as quantifiable, scalable metrics that capture the emergence of organized complexity in open, non-equilibrium systems. We examine two major classes of systems: (1) living systems, revisiting Schrödinger's insight that biological growth may locally reduce entropy while increasing structural order, and (2) irreversible natural processes such as oxidation, diffusion, and material aging. We formalize a Universal Law: expressed as a non-decreasing function Ω(t) = α·KC(t) + β·FD(t), which parallels the Second Law of Thermodynamics but tracks the rise in algorithmic and geometric complexity. This framework integrates principles from complexity science, providing a robust, mathematically grounded lens for describing the directional evolution of systems across scales-from crystals to cognition.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"27 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468767/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural Complexity as a Directional Signature of System Evolution: Beyond Entropy.\",\"authors\":\"Donglu Shi\",\"doi\":\"10.3390/e27090925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a universal framework for understanding system evolution based on structural complexity, offering a directional signature that applies across physical, chemical, and biological domains. Unlike entropy, which is constrained by its definition in closed, equilibrium systems, we introduce Kolmogorov Complexity (KC) and Fractal Dimension (FD) as quantifiable, scalable metrics that capture the emergence of organized complexity in open, non-equilibrium systems. We examine two major classes of systems: (1) living systems, revisiting Schrödinger's insight that biological growth may locally reduce entropy while increasing structural order, and (2) irreversible natural processes such as oxidation, diffusion, and material aging. We formalize a Universal Law: expressed as a non-decreasing function Ω(t) = α·KC(t) + β·FD(t), which parallels the Second Law of Thermodynamics but tracks the rise in algorithmic and geometric complexity. This framework integrates principles from complexity science, providing a robust, mathematically grounded lens for describing the directional evolution of systems across scales-from crystals to cognition.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"27 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468767/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e27090925\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e27090925","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个基于结构复杂性的理解系统进化的通用框架,提供了一个适用于物理、化学和生物领域的定向签名。与熵不同,熵在封闭的平衡系统中受其定义的约束,我们引入柯尔莫哥洛夫复杂度(KC)和分形维数(FD)作为可量化的、可扩展的度量,它们捕捉了开放的、非平衡系统中有组织复杂性的出现。我们研究了两大类系统:(1)生命系统,回顾Schrödinger关于生物生长可能在增加结构秩序的同时局部减少熵的见解;(2)不可逆的自然过程,如氧化、扩散和材料老化。我们形式化了一个普遍定律:表示为一个非递减函数Ω(t) = α·KC(t) + β·FD(t),它与热力学第二定律相似,但跟踪算法和几何复杂性的上升。这个框架整合了复杂性科学的原理,为描述从晶体到认知的跨尺度系统的定向演化提供了一个强大的、基于数学的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Complexity as a Directional Signature of System Evolution: Beyond Entropy.

We propose a universal framework for understanding system evolution based on structural complexity, offering a directional signature that applies across physical, chemical, and biological domains. Unlike entropy, which is constrained by its definition in closed, equilibrium systems, we introduce Kolmogorov Complexity (KC) and Fractal Dimension (FD) as quantifiable, scalable metrics that capture the emergence of organized complexity in open, non-equilibrium systems. We examine two major classes of systems: (1) living systems, revisiting Schrödinger's insight that biological growth may locally reduce entropy while increasing structural order, and (2) irreversible natural processes such as oxidation, diffusion, and material aging. We formalize a Universal Law: expressed as a non-decreasing function Ω(t) = α·KC(t) + β·FD(t), which parallels the Second Law of Thermodynamics but tracks the rise in algorithmic and geometric complexity. This framework integrates principles from complexity science, providing a robust, mathematically grounded lens for describing the directional evolution of systems across scales-from crystals to cognition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信